Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study.

molecules-logo

“Due to renewed interest in the cultivation and production of Italian Cannabis sativa L., we proposed a multi-methodological approach to explore chemically and biologically both the essential oil and the aromatic water of this plant. We reported the chemical composition in terms of cannabinoid content, volatile component, phenolic and flavonoid pattern, and color characteristics. Then, we demonstrated the ethnopharmacological relevance of this plant cultivated in Italy as a source of antioxidant compounds toward a large panel of enzymes (pancreatic lipase, α-amylase, α-glucosidase, and cholinesterases) and selected clinically relevant, multidrug-sensible, and multidrug-resistant microbial strains (Staphylococcus aureusHelicobacter pyloriCandida, and Malassezia spp.), evaluating the cytotoxic effects against normal and malignant cell lines. Preliminary in vivo cytotoxicity was also performed on Galleria mellonella larvae. The results corroborate the use of this natural product as a rich source of important biologically active molecules with particular emphasis on the role exerted by naringenin, one of the most important secondary metabolites.”

https://www.ncbi.nlm.nih.gov/pubmed/30544765

https://www.mdpi.com/1420-3049/23/12/3266

Cannabidiol in the Treatment of Post-Traumatic Stress Disorder: A Case Series.

The Journal of Alternative and Complementary Medicine cover image

“Cannabidiol (CBD) is a non-psychotomimetic cannabinoid compound that is found in plants of the genus Cannabis. Preclinical research has suggested that CBD may have a beneficial effect in rodent models of post-traumatic stress disorder (PTSD). This effect is believed to be due to the action of CBD on the endocannabinoid system. CBD has seen a recent surge in research regarding its potential value in a number of neuro-psychiatric conditions. This is the first study to date examining the clinical benefit of CBD for patients with PTSD.

RESULTS:

From the total sample of 11 patients, 91% (n = 10) experienced a decrease in PTSD symptom severity, as evidenced by a lower PCL-5 score at 8 weeks than at their initial baseline. The mean total PCL-5 score decreased 28%, from a mean baseline score of 51.82 down to 37.14, after eight consecutive weeks of treatment with CBD. CBD was generally well tolerated, and no patients discontinued treatment due to side effects.

CONCLUSIONS:

Administration of oral CBD in addition to routine psychiatric care was associated with PTSD symptom reduction in adults with PTSD. CBD also appeared to offer relief in a subset of patients who reported frequent nightmares as a symptom of their PTSD. Additional clinical investigation, including double-blind, placebo-controlled trials, would be necessary to further substantiate the response to CBD that was observed in this study.”

https://www.ncbi.nlm.nih.gov/pubmed/30543451

https://www.liebertpub.com/doi/10.1089/acm.2018.0437

Cannabinoids: Potential Role in Inflammatory and Neoplastic Skin Diseases.

 

“The endocannabinoid system is a complex and nearly ubiquitous network of endogenous ligands, enzymes, and receptors that can also be stimulated by exogenous compounds such as those derived from the marijuana plant, Cannabis sativa.

Recent data have shown that the endocannabinoid system is fully functional in the skin and is responsible for maintaining many aspects of skin homeostasis, such as proliferation, differentiation, and release of inflammatory mediators. Because of its role in regulating these key processes, the endocannabinoid system has been studied for its modulating effects on both inflammatory disorders of the skin and skin cancer.

Although legal restrictions on marijuana as a Schedule I drug in the USA have made studying cannabinoid compounds unfavorable, an increasing number of studies and clinical trials have focused on the therapeutic uses of cannabinoids. This review seeks to summarize the current, and rapidly expanding field of research on the broad potential uses of cannabinoids in inflammatory and neoplastic diseases of the skin.”

https://www.ncbi.nlm.nih.gov/pubmed/30542832

Cannabinoids and Pain: New Insights From Old Molecules.

Image result for frontiers in pharmacology

“Cannabis has been used for medicinal purposes for thousands of years.

The prohibition of cannabis in the middle of the 20th century has arrested cannabis research.

In recent years there is a growing debate about the use of cannabis for medical purposes.

The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms.

Chronic pain is the most commonly cited reason for using medical cannabis.

Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes.

Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans.

The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation.

Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain.

The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects.

Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use.

Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain.

In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.”

https://www.ncbi.nlm.nih.gov/pubmed/30542280

https://www.frontiersin.org/articles/10.3389/fphar.2018.01259/full

An Integrated Review of Cannabis and Cannabinoids in Adult Oncologic Pain Management.

Pain Management Nursing

“The objective of this paper is to review the available literature regarding the use of cannabis and cannabinoids in adult oncologic pain management.

RESULTS:

The final number of articles included is nine articles. Of the nine studies reviewed, eight reviewed the effect of the cannabinoid THC on cancer pain, and one study reviewed the use of medicinally available whole plant cannabis. The following study types were included: multiple multi-center, randomized, placebo- controlled trials and two prospective observational survey studies.

RESULTS AND CONCLUSIONS:

Of the eight studies that reviewed the effect of the cannabinoid THC, five found THC to be more effective than placebo, one found THC to be more effective than placebo in American patients but ineffective in patients from other countries, and two found THC to be no more effective than placebo. The study that reviewed the effect of the whole plant cannabis found that there was a significant decrease in pain among those patients smoking cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/30527857

https://www.painmanagementnursing.org/article/S1524-9042(18)30209-1/fulltext

Reduced prevalence of alcoholic gastritis in hospitalized individuals who consume cannabis.

Publication cover image

“Alcoholic gastritis, a superficial erosive disease of the stomach, is a common manifestation of risky alcohol use. In contrast, cannabis which is frequently co-used with alcohol suppresses gastric acidity and might counteract the deleterious effect of alcohol on the gastric mucosa.

RESULTS:

Our study revealed that among risky alcohol users, cannabis co-users have a lower prevalence of alcoholic gastritis compared to non-cannabis users (1,289[1,169-1,421] vs. 1,723[1,583-1,875] per 100,000 hospitalizations for risky alcohol use), resulting in a 25% decreased probability of alcoholic gastritis (aRR:0.75[0.66-0.85]; p-value:<0.0001). Furthermore, dependent cannabis usage resulted in a lower prevalence of alcoholic gastritis when compared to both non-dependent-cannabis users (0.72[0.52-0.99]), and to non-cannabis-users (0.56[0.41-0.76]).

CONCLUSIONS:

We reveal that risky alcohol drinking combined with cannabis use is associated with reduced prevalence of alcohol-associated gastritis in patients. Given increased cannabis legislation globally, understanding if and how the specific ingredients in cannabis plant extract can be used in the treatment of alcoholic gastritis is paramount. In this regard, further molecular mechanistic studies are needed to delineate the mechanisms of our novel findings not only for alcoholic gastritis but also gastritis from other causes.”

https://www.ncbi.nlm.nih.gov/pubmed/30536396

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.13930

Cannabidiolic Acid-Mediated Interference with AP-1 Transcriptional Activity in MDA-MB-231 Breast Cancer Cells.

 Image result for Nat Prod Commun journal

“We reported that cannabidiolic acid (CBDA), a non-psychotropic constituent of fiber-type cannabis plants, down-regulates the mRNA expression of cyclooxygenase-2 (COX-2) in highly aggressive MDA-MB-231 human breast cancer cells. However, the molecular mechanism(s) underlying the CBDA suppression of COX-2 have not yet been elucidated in detail. In MDA-MB-231 cells, COX-2 expression is known to be tightly regulated by the transcriptional activity of activator protein-I (AP-1), which is composed of a heterodimer of c-Fos and c-Jun. AP-1-mediated transcriptional activity was inhibited by CBDA in a dose-dependent manner. The expression of c-fos was maintained at markedly lower levels (0.035) than basal c-jun expression levels (1.0), implicating c- fos as a limiting factor in the regulation of COX-2. Analyses indicated that CBDA abrogated the expression of c-fos mRNA without affecting c-jun. Collectively, these results suggest that CBDA abolishes the expression of COX-2 by interfering with AP-I activity in MDA-MB3-231 cells.”

https://www.ncbi.nlm.nih.gov/pubmed/30496661

Oral Ingestion of Cannabis sativa: Risks, Benefits, and Effects on Malaria-Infected Hosts.

Cannabis and Cannabinoid Research cover image

“The emergence of a multidrug-resistant strain of Plasmodium falciparum (Pf Pailin) raises concern about malaria control strategies. Unfortunately, the role(s) of natural plants/remedies in curtailing malaria catastrophe remains uncertain. The claims of potential antimalarial activity of Cannabis sativa in vivo have not been well established nor the consequences defined. This study was, therefore, designed to evaluate the effects of whole cannabis consumption on malaria-infected host.

Methods: Thirty mice were inoculated with dose of 1×107 chloroquine-resistant Plasmodium berghei ANKA-infected erythrocyte and divided into six treatment groups. Cannabis diet formulations were prepared based on weighted percentages of dried cannabis and standard mice diet and the study animals were fed ad libitum. Chemosuppression of parasitemia, survival rates, parasite clearance, and recrudescence time were evaluated. Histopathological studies were performed on the prefrontal cortex (PFC) and hippocampus of the animals after 14 days’ consumption of cannabis diet formulation by naive mice.

Results: There was a significant difference (p<0.05) in the day-4 chemosuppression of parasitemia between the animals that were fed C. sativa and chloroquine relative to the untreated controls. There was also a significant difference in the survival rate (p<0.05) of animals fed C. sativa diet (40%, 20%, 10%, and 1%) in contrast to control animals on standard mice diet. A parasite clearance time of 2.18±0.4 was recorded in the chloroquine treatment group, whereas recrudescence in chloroquine group occurred on day 7. There were slight histomorphological changes in the PFC and cell densities of the dentate gyrus of the hippocampus of animals that were fed C. sativa.

Conclusions: C. sativa displayed mild antimalarial activity in vivo. There was evident reduction in symptomatic manifestation of malaria disease, though unrelated to levels of parasitemia. This disease tolerance status may be beneficial, but may also constitute a transmission burden through asymptomatic carriage of parasites by habitual cannabis users.”

https://www.ncbi.nlm.nih.gov/pubmed/30498786

https://www.liebertpub.com/doi/10.1089/can.2018.0043

Peripubertal cannabidiol treatment rescued behavioral and neurochemical abnormalities in MAM model of schizophrenia.

 Neuropharmacology

“In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression which might be due to a reduction in DNA methylation at gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult.”

https://www.ncbi.nlm.nih.gov/pubmed/30496751

https://www.sciencedirect.com/science/article/pii/S0028390818308761?via%3Dihub

The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.

 Journal of Neurotrauma cover image“Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG that binds to both CB1 and CB2 receptors 1 hr after traumatic brain injury in mice attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors, with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats, subjected to closed head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of TNF-alpha production, increased synaptogenesis and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.”

https://www.ncbi.nlm.nih.gov/pubmed/30489198

https://www.liebertpub.com/doi/10.1089/neu.2018.6063