Inhibition of Cannabinoid Receptor 1 Can Influence the Lipid Metabolism in Mice with Diet-Induced Obesity.

“A growing number of evidences accumulated about critical metabolic role of cannabinoid type 1 receptor (CB1), carnitine palmitoyltransferase-1 (CPT1) and peroxisome proliferator-activated receptors (PPARs) in some peripheral tissues, including adipose tissue, liver, skeletal muscle and heart.

Taken together, these data indicate that the inhibition of CB1 could ameliorate lipid metabolism via the stimulation of the CPT1A and CPT1B expression in vivo. Simultaneously, the PPARα and PPARγ expression levels significantly differed compared to that of PPARβ in obesity and lipid metabolism-related disorders under blockade of CB1.

Both the mechanism of the influence of CB1 inhibition on lipid metabolism in the examined tissues and the specific mechanism of PPARα, PPARγ and PPARβ involvement in lipid exchange under these conditions remain to be further elucidated.”

https://www.ncbi.nlm.nih.gov/pubmed/30472964

https://link.springer.com/article/10.1134%2FS0006297918100127

The Highs and Lows of the Endocannabinoid System—Another Piece to the Epilepsy Puzzle?

American Epilepsy Society

“Cannabis extracts have been used for the treatment of epilepsy for centuries.

Yet, until recently, this empirical use was not linked to a known mechanism of action. Of the two main and most frequently investigated compounds derived from the cannabis plant, the mechanism of action of tetrahydrocannabinol (THC) is relatively clear and well documented (via CB1R distributed mainly centrally and CB2R distributed mainly peripherally).

The components of endocannabinoid system (ECS) are omnipresent in our bodies and have very divergent roles. Modulating ECS may have therapeutic potential in many human maladies, including psychiatric disorders (e.g., depression, posttraumatic stress disorder, anxiety, or schizophrenia), neurologic conditions, including epilepsy and neurodegenerative processes, diabetes and its complications, obesity, pain management, cancer treatment, graft versus host disease, treatment of chemotherapy side effects, and so on. The list is long, and it is constantly growing.

We investigated changes in the endocannabinoid system and glucose metabolism during temporal lobe epileptogenesis.

This study provides unique evidence that the CB1R is dynamically and progressively involved from the start of mesial temporal lobe epileptogenesis.”

http://epilepsycurrents.org/doi/10.5698/1535-7597.18.5.315

Impact of recreational and medicinal marijuana on surgical patients: A review.

American Journal of Surgery Home

“As medicinal and recreational marijuana use broadens across the United States, knowledge of its effects on the body will become increasingly important to all health care providers, including surgeons.

DATA SOURCES:

We performed a literature review of Pubmed for articles discussing the basic science related to cannabinoids, as well as articles regarding cannabinoid medications, and cannabis use in surgical patients.

CONCLUSIONS:

The primary components in the cannabis plant, tetrahydrocannabinol (THC) and cannabidiol (CBD), have been made available in numerous forms and formulations to treat multiple medical conditions, and recreational access to marijuana is increasing. Of particular importance to the surgeon may be their effects on prolonging intestinal motility, decreasing inflammation, increasing hunger, mitigating pain, and reducing nausea and vomiting. Perioperative use of medicinal or recreational marijuana will become increasingly prevalent, and the surgeon should be aware of the positive and negative effects of these cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/30471810

https://www.americanjournalofsurgery.com/article/S0002-9610(18)31123-1/fulltext

The level of evidence of medical marijuana use for treating disabilities: a scoping review.

Publication Cover

“There is sufficient evidence that medical marijuana is effective in treating epileptic seizures and chronic pain.

Medical marijuana may improve the level of functioning and quality of life for individuals with certain disabilities.”

https://www.ncbi.nlm.nih.gov/pubmed/30456993

https://www.tandfonline.com/doi/abs/10.1080/09638288.2018.1523952?journalCode=idre20

Cannabis for the treatment of paediatric epilepsy? An update for Canadian paediatricians.

Issue Cover

“The plant Cannabis sativa produces over 140 known cannabinoids. These chemicals generate considerable interest in the medical research community for their possible application to several intractable disease conditions. Recent reports have prompted parents to strongly consider Cannabis products to treat their children with drug resistant epilepsy. Physicians, though, are reluctant to prescribe Cannabis products due to confusion about their regulatory status and limited clinical data supporting their use. We provide the general paediatrician with a brief review of cannabinoid biology, the literature regarding their use in children with drug resistant epilepsy, the current Health Canada and Canadian Paediatric Society recommendations and also the regulations from the physician regulatory bodies for each province and territory. Given the complexities of conducting research on Cannabis products for children with epilepsy, we also discuss outstanding research objectives that must be addressed to support Cannabis products as an accepted treatment option for children with refractory epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/30455572

https://academic.oup.com/pch/article-abstract/23/6/368/4961446?redirectedFrom=fulltext

Epilepsy and Cannabis: A Literature Review.

 

Image result for cureus journal

“Epilepsy is considered to be one of the most common non-communicable neurological diseases especially in low to middle-income countries. Approximately one-third of patients with epilepsy have seizures that are resistant to antiepileptic medications. Clinical trials for the treatment of medically refractory epilepsy have mostly focused on new drug treatments, and result in a significant portion of subjects whose seizures remain refractory to medication.

The off-label use of cannabis sativa plant in treating seizures is known since ancient times. The active ingredients of this plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the latter considered safer and more effective in treating seizures, and with less adverse psychotropic effects.

Clinical trials prior to two years ago have shown little to no significant effects of cannabis in reducing seizures. These trials seem to be underpowered, with a sample size less than 15. In contrast, more recent studies that have included over 100 participants showed that CBD use resulted in a significant reduction in seizure frequency.

Adverse effects of CBD overall appear to be benign, while more concerning adverse effects (e.g., elevated liver enzymes) improve with continued CBD use or dose reduction. In most of the trials, CBD is used in adjunct with epilepsy medication, therefore it remains to be determined whether CBD is itself antiepileptic or a potentiator of traditional antiepileptic medications. Future trials may evaluate the efficacy of CBD in treating seizures due to specific etiologies (e.g., post-traumatic, post-stroke, idiopathic).”

https://www.ncbi.nlm.nih.gov/pubmed/30443449

https://www.cureus.com/articles/14699-epilepsy-and-cannabis-a-literature-review

Effects of Cannabidiol on Diabetes Outcomes and Chronic Cerebral Hypoperfusion Comorbidities in Middle-Aged Rats.

“Diabetes and aging are risk factors for cognitive impairments after chronic cerebral hypoperfusion (CCH).

Cannabidiol (CBD) is a phytocannabinoid present in the Cannabis sativa plant. It has beneficial effects on both cerebral ischemic diseases and diabetes.

We have recently reported that diabetes interacted synergistically with aging to increase neuroinflammation and memory deficits in rats subjected to CCH.

The present study investigated whether CBD would alleviate cognitive decline and affect markers of inflammation and neuroplasticity in the hippocampus in middle-aged diabetic rats submitted to CCH.

These results suggest that the neuroprotective effects of CBD in middle-aged diabetic rats subjected to CCH are related to a reduction in neuroinflammation. However, they seemed to occur independently of hippocampal neuroplasticity changes.”

https://www.ncbi.nlm.nih.gov/pubmed/30430393

https://link.springer.com/article/10.1007%2Fs12640-018-9972-5

Autism Spectrum Disorders: Potential Neuro-Psychopharmacotherapeutic Plant-Based Drugs.

ASSAY and Drug Development Technologies cover image

“Over the years, scientific researches have validated the healing benefits of many psychopharmacotherapeutic plant-based drugs to ameliorate psychiatric disorders. In contrast, the use of chemical procedures to isolate and purify specific compounds from plants that have been used to treat autism spectrum disorders (ASDs) and its clinical features may contribute to improve the quality of life of many patients. Also, herbal pharmacological treatments could improve the core symptoms of autism with fewer side effects. This review will focus on the uses and actions of phytopharmaceuticals in the behavioral conditions of ASDs. A large number of natural compound-based plant drugs have been tested in murine models of autism and in clinical trials with remarkable success in reversing the core and associated behaviors with autism such as flavonoids, cannabinoids, curcuminoids, piperine, resveratrol, and bacosides. This plant-based drug alternative is safer given that many psychiatric disorders and neurodegenerative pathologies do not often respond well to currently prescribed medications or have significant side effects. However, it is noteworthy to consider the need for large clinical trials to determine safety and efficacy. Many results are based on case reports or small size samples, and often the studies are open label. Standardization of procedures (i.e., purity and concentrations) and quality controls are strictly required to ensure the absence of side effects.”

https://www.ncbi.nlm.nih.gov/pubmed/30427697

https://www.liebertpub.com/doi/10.1089/adt.2018.848

Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

Journal of Pharmacology and Experimental Therapeutics

“Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation.

Cannabinoid type-2 (CB2) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD).

We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD.

We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor-α in a manner reversed by CB2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5′-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect.

This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD.”

https://www.ncbi.nlm.nih.gov/pubmed/29632236

http://jpet.aspetjournals.org/content/365/3/652.long

Efficacy of cannabinoids in paediatric epilepsy.

Developmental Medicine & Child Neurology banner

“There are hundreds of compounds found in the marijuana plant, each contributing differently to the antiepileptic and psychiatric effects. Cannabidiol (CBD) has the most evidence of antiepileptic efficacy and does not have the psychoactive effects of ∆9 -tetrahydrocannabinol. CBD does not act via cannabinoid receptors and its antiepileptic mechanism of action is unknown. Despite considerable community interest in the use of CBD for paediatric epilepsy, there has been little evidence for its use apart from anecdotal reports, until the last year. Three randomized, placebo-controlled, double-blind trials in Dravet syndrome and Lennox-Gastaut syndrome found that CBD produced a 38% to 41% median reduction in all seizures compared to 13% to 19% on placebo. Similarly, CBD resulted in a 39% to 46% responder rate (50% convulsive or drop-seizure reduction) compared to 14% to 27% on placebo. CBD was well tolerated; however, sedation, diarrhoea, and decreased appetite were frequent. CBD shows similar efficacy to established antiepileptic drugs. WHAT THIS PAPER ADDS: Cannabidiol (CBD) shows similar efficacy in the severe paediatric epilepsies to other antiepileptic drugs. Careful down-titration of benzodiazepines is essential to minimize sedation with adjunctive CBD.”

https://www.ncbi.nlm.nih.gov/pubmed/30402932

https://onlinelibrary.wiley.com/doi/full/10.1111/dmcn.14087