Turned-off Cannabinoid Receptor Turns On Colorectal Tumor Growth – CB1 Suppresses Tumors, A New Potential Path For Treatment, Prevention

“New preclinical research shows that cannabinoid cell surface receptor CB1 plays a tumor-suppressing role in human colorectal cancer, scientists report in the Aug. 1 edition of the journal Cancer Research.

CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

More: http://www.medicalnewstoday.com/releases/117055.php

Most Docs OK With Medical Marijuana: Survey – US News and World Report

“Majority would give a prescription to an advanced cancer patient in pain. Three-quarters of doctors who responded to a survey about medical marijuana said they would approve the use of the drug to help ease pain in an older woman with advanced breast cancer.”

“The point of the vignette was to illustrate the kinds of patients that show up on our doorstep who need help. This issue is not one you can ignore, and some states have already taken matters into their own hands,” said Dr. J. Michael Bostwick, a professor of psychiatry at the Mayo Clinic in Rochester, Minn.

“There are no 100 percents in medicine. There’s a lot of anecdotal evidence that this is something we should study more. Forgive the pun, but there’s probably some fire where there’s smoke, and we should investigate the medicinal use of marijuana or its components,” Bostwick said.

Marijuana comes from the hemp plant Cannabis sativa. It’s a dry, shredded mix of the plant’s leaves, flowers, stems and seeds. It can be smoked as a cigarette or in a pipe, or it can be added to certain foods, such as brownies.”

More: http://health.usnews.com/health-news/news/articles/2013/05/29/most-docs-ok-with-medical-marijuana-survey

There Is No Mistaking The Evidence, Cannabis Cures Cancer

“Cannabis is one of the most powerful healing plants in the world and it makes cancer essentially disappear. Cannabis compounds are responsible for halting the growth factors that are responsible for metastatic growth.

Although there has been scientific evidence that marijuana can shrink and even kill tumors since the 1970s, much of the recent public interest in this research has been inspired by Run From The Cure, a documentary about a Canadian man who claims that the concentrated oil from the cannabis plant has cured his skin cancer. He then tries the cure on a number of other cancer victims in his community with similar results.

Researchers have now found that the compound, called cannabidiol, has the ability to ‘switch off’ the gene responsible for metastasis in an aggressive form of breast cancer. Importantly, this substance does not produce the psychoactive properties of the cannabis plant.”

Read more: http://preventdisease.com/news/13/050313_There-Is-No-Mistaking-The-Evidence-Cannabis-Cures-Cancer.shtml

Cannabis tea revisited: a systematic evaluation of the cannabinoid composition of cannabis tea.

“Cannabis is one of the oldest known medicinal plants, and a large variety of biological activities have been described. The main constituents, the cannabinoids, are thought to be most important for these activities. Although smoking of cannabis is by far the most common way of consumption, a significant part of medicinal users consume it in the form of a tea.

However, not much is known about the composition of cannabis tea, or the effect of different parameters during preparation, handling or storage. In this study we used the high-grade cannabis available in Dutch pharmacies to study the cannabinoid composition of tea under standardized and quantitative conditions. Experimental conditions were systematically varied in order to mimic the possible variations made by medicinal users.

During analysis there was a specific focus on the cannabinoid tetrahydrocannabinol and its acidic precursor, tetrahydrocannabinolic acid. Also the role of non-psychoactive cannabinoids as components of cannabis tea are discussed.

The results obtained in this study provide a clear quantitative insight in the phytochemistry of cannabis tea preparation and can contribute to a better appreciation of this mode of cannabis administration.”

http://www.ncbi.nlm.nih.gov/pubmed/17604926 

The role of phytochemicals in the treatment and prevention of dementia.

Drugs & Aging

“Dementia pathologies such as Alzheimer’s disease (AD) are reaching epidemic proportions, yet they are not successfully managed by effective symptomatic treatments. Only five drugs have been developed to alleviate cognitive symptoms, and more effective and safe treatments are needed for both the cognitive symptoms and behavioural and psychological symptoms of dementia (BPSD). As two of these licensed drugs (cholinesterase inhibitors [ChEIs]) are naturally derived (galantamine and rivastigmine), the potential for plants to yield new therapeutic agents has stimulated extensive research to discover new ChEIs together with plant extracts, phytochemicals and their derivatives with other mechanistic effects relevant to dementia treatment. This review presents the potential and actual therapeutic strategies for dementia in relation to the known mechanisms of dementia pathology. Phytochemicals that have shown mechanistic effects relevant to the pathological targets in dementia are discussed, with an emphasis on those showing positive clinical trial evidence. Those phytochemicals discussed include the alkaloid physostigmine, a ChEI from the calabar bean (Physostigma venenosum), which has been used as a template for the development of synthetic derivatives that inhibit acetylcholinesterase, including the drug rivastigmine. Also discussed are other ChEI alkaloids including huperzine A, from Huperzia serrata, and galantamine, originally from the snowdrop (Galanthus woronowii); both alkaloids improve cognitive functions in AD patients.

Other phytochemicals discussed include cannabinoids (e.g. cannabidiol) from Cannabis sativa, which are emerging as potential therapeutic agents for BPSD, and resveratrol (occurs in various plants) and curcumin (from turmeric [Curcuma longa]), which have been investigated for their pharmacological activities relevant to dementia and their potential effects on delaying dementia progression. The review also discusses plant extracts, and their known constituents, that have shown relevant mechanistic effects for dementia and promising clinical data, but require more evidence for their clinical efficacy and safety. Such plants include Ginkgo biloba, which has been extensively studied in numerous clinical trials, with most outcomes showing positive effects on cognitive functions in dementia patients; however, more reliable and consistent clinical data are needed to confirm efficacy. Other plants and their extracts that have produced promising clinical data in dementia patients, with respect to cognition, include saffron (Crocus sativus), ginseng (Panax species), sage (Salvia species) and lemon balm (Melissa officinalis), although more extensive and reliable clinical data are required. Other plants that are used in traditional practices of medicine have been suggested to improve cognitive functions (e.g. Polygala tenuifolia) or have been associated with alleviation of BPSD (e.g. the traditional prescription yokukansan); such remedies are often prescribed as complex mixtures of different plants, which complicates interpretation of pharmacological and clinical data and introduces additional challenges for quality control. Evidence for the role of natural products in disease prevention, the primary but considerably challenging aim with respect to dementia, is limited, but the available epidemiological and clinical evidence is discussed, with most studies focused on ChEIs, nicotine (from Nicotiana species), curcumin, wine polyphenols such as resveratrol and G. biloba. Challenges for the development of phytochemicals as drugs and for quality control of standardized plant extracts are also considered.”

http://www.ncbi.nlm.nih.gov/pubmed/21639405

https://link.springer.com/article/10.2165%2F11591310-000000000-00000

Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders.

“In traditional practices of medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer’s disease (AD) and other memory related disorders. An ethnopharmacological approach has provided leads to identifying potential new drugs from plant sources, including those for memory disorders. There are numerous drugs available in Western medicine that have been directly isolated from plants, or are derived from templates of compounds from plant sources. For example, some alkaloids from plant sources have been investigated for their potential in AD therapy, and are now in clinical use (e.g. galantamine from Galanthus nivalis L. is used in the United Kingdom).

 Various other plant species have shown favourable effects in AD, or pharmacological activities indicating the potential for use in AD therapy.

This article reviews some of the plants and their active constituents that have been used in traditional medicine, including Ayurvedic, Chinese, European and Japanese medicine, for their reputed cognitive-enhancing and antidementia effects. Plants and their constituents with pharmacological activities that may be relevant to the treatment of cognitive disorders, including enhancement of cholinergic function in the central nervous system, anti-cholinesterase (anti-ChE), antiinflammatory, antioxidant and oestrogenic effects, are discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/12557240

Medicinal plants and Alzheimer’s disease: from ethnobotany to phytotherapy.

“The use of complementary medicines, such as plant extracts, in dementia therapy varies according to the different cultural traditions. In orthodox Western medicine, contrasting with that in China and the Far East for example, pharmacological properties of traditional cognitive- or memory-enhancing plants have not been widely investigated in the context of current models of Alzheimer’s disease. An exception is Gingko biloba in which the gingkolides have antioxidant, neuroprotective and cholinergic activities relevant to Alzheimer’s disease mechanisms. The therapeutic efficacy of Ginkgo extracts in Alzheimer’s disease in placebo controlled clinical trials is reportedly similar to currently prescribed drugs such as tacrine or donepezil and, importantly, undesirable side effects of Gingko are minimal. Old European reference books, such as those on medicinal herbs, document a variety of other plants such as Salvia officinalis (sage) and Melissa officinalis (balm) with memory-improving properties, and cholinergic activities have recently been identified in extracts of these plants. Precedents for modern discovery of clinically relevant pharmacological activity in plants with long-established medicinal use include, for example, the interaction of alkaloid opioids in Papaver somniferum (opium poppy) with endogenous opiate receptors in the brain. With recent major advances in understanding the neurobiology of Alzheimer’s disease, and as yet limited efficacy of so-called rationally designed therapies, it may be timely to re-explore historical archives for new directions in drug development. This article considers not only the value of an integrative traditional and modern scientific approach to developing new treatments for dementia, but also in the understanding of disease mechanisms. Long before the current biologically-based hypothesis of cholinergic derangement in Alzheimer’ s disease emerged, plants now known to contain cholinergic antagonists were recorded for their amnesia- and dementia-inducing properties.”

http://www.ncbi.nlm.nih.gov/pubmed/10411211

Nature against depression.

Abstract

“Depression is a major health problem currently recognized as a leading cause of morbidity worldwide. In the United States alone, depression affects approximately 20% of the population. With current medications suffering from major shortcomings that include slow onset of action, poor efficacy, and unwanted side effects, the search for new and improved antidepressants is ever increasing. In an effort to evade side effects, people have been resorting to popular traditional herbal medicines to relieve the symptoms of depression, and there is a need for more empirical knowledge about their use and effectiveness. This review provides an overview of the current knowledge state regarding a variety of natural plant products commonly used in depression. Herbal medicines discussed that have been used in clinical trials for the treatment of mild to moderate depression states include the popular St. John’s wort, saffron, Rhodiola, lavender, Echium, and the Chinese formula banxia houpu. In addition, new emerging herbal products that have been studied in different animal models are discussed including Polygala tenuifolia, the traditional Chinese herbal SYJN formula, gan mai da zao, and Cannabis sativa constituents. A comprehensive review of the chemical, pharmacological, and clinical aspects of each of the reviewed products is provided. Finally, recent preclinical studies reporting the antidepressant action of marine-derived natural products are discussed at the end of the review.”

http://www.ncbi.nlm.nih.gov/pubmed/22414105

Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non-Small Cell Lung Cancer Growth and Metastasis

“Cannabinoid receptors are expressed in human lung cancers”

 

  “Recently, CB1 and CB2 have been shown to be overexpressed on tumor cells compared to normal cells in various types of cancers, such as breast and liver, and therefore could be used as novel targets for cancer. In addition, several cannabinoids, including THC and cannabidiol, synthetic cannabinoid-agonists JWH-133, Win55,212-2, were shown to inhibit tumor growth and progression of several types of cancers, including glioma, glioblastoma multiforme, breast, prostate, colon carcinomas, leukemia and lymphoid tumors.”

“There are three general types of cannabinoids: phytocannabinoids, THC and cannabidiol, are derived from plants; endogenous cannabinoids, 2AG and AEA, which are produced inside the body; and synthetic cannabinoids, JWH-133/JWH-015, CP-55 and Win55,212-2.”

“Non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide; however, only limited therapeutic treatments are available. Hence, we investigated the role of cannabinoid receptors, CB1 and CB2, as novel therapeutic targets against NSCLC…”

“These results suggest that CB1 and CB2 could be used as novel therapeutic targets against NSCLC.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025486/

 

Prescribing cannabis for harm reduction

“Neuropathic pain affects between 5% and 10% of the US population and can be refractory to treatment. Opioids may be recommended as a second-line pharmacotherapy but have risks including overdose and death. Cannabis has been shown to be effective for treating nerve pain without the risk of fatal poisoning. The author suggests that physicians who treat neuropathic pain with opioids should evaluate their patients for a trial of cannabis and prescribe it when appropriate prior to using opioids. This harm reduction strategy may reduce the morbidity and mortality rates associated with prescription pain medications.”

“Medicine relies upon the principle of, “First, do no harm,” and one might supplement the axiom to read – “First, do no harm, and second, reduce all the harm you can.” “Harm reduction” or “harm minimization” can be defined in the broadest sense as strategies designed to reduce risk or harm. Those harmed may include the individual, others impacted by the harmed person, and society. The substitution of a safer drug for one that is more dangerous is considered harm reduction. Specific examples of HR include prescribing methadone or buprenorphine to replace heroin, prescribing nicotine patches to be used instead of smoking tobacco, and prescribing intranasal naloxone to patients on opioid therapy to be utilized in case of overdose. Substituting cannabis for prescribed opioids may be considered a harm reduction strategy.”

“Under the Federal Controlled Substance Act “marihuana” is illegal and classified as a schedule I substance-meaning it has a high potential for abuse and no accepted medical use. However, sixteen states and the District of Columbia have legalized cannabis for medicinal use and these include Alaska, Arizona, California, Colorado, Delaware, Hawaii, Maine, Michigan, Montana, Nevada, New Jersey, New Mexico, Oregon, Rhode Island, Vermont, and Washington. Each state law differs but all allow physicians to “authorize” or “recommend” cannabis for specific ailments. This “recommendation” affords legal protections for patients to obtain and use medicinal cannabis, and may be considered the “prescription.””

“Cannabis (Cannabis sativa) and the opium poppy (Papaver somniferum) are both ancient plants that have been used medicinally for thousands of years. The natural and synthetic derivatives of opium, including morphine, are called “opioids.”  “Cannabinoids” is the term for a class of compounds within cannabis of which delta-9-tetrahydrocannabinol (THC) is the most familiar. Besides THC, approximately 100 other cannabinoids have been identified including one of special scientific interest called “cannabidiol” (CBD). The human body produces both endogenous cannabinoids (endocannabinoids) and opioids (endorphins) and contains specific receptors for these substances. There is an extensive literature on opioids but far less on cannabis/cannabinoids (CC).”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3295721/