Protective Effects of Cannabidiol against Seizures and Neuronal Death in a Rat Model of Mesial Temporal Lobe Epilepsy.

Image result for Front Pharmacol

“The present study reports the behavioral, electrophysiological, and neuropathological effects of cannabidiol (CBD), a major non-psychotropic constituent of Cannabis sativa, in the intrahippocampal pilocarpine-induced status epilepticus (SE) rat model. Our findings demonstrate anticonvulsant and neuroprotective effects of CBD preventive treatment in the intrahippocampal pilocarpine epilepsy model, either as single or multiple administrations, reinforcing the potential role of CBD in the treatment of epileptic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/28367124

“This study showed that CBD treatment reduces the behavioral severity and oscillatory electrographic changes of SE, the post-ictal lethargy, and the neuronal loss associated with the pilocarpine-induced SE rat model. More studies are needed to understand the specific mechanisms of action related to the neuroprotective and anticonvulsant effects of CBD in epilepsy.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355474/

Acetylcholinesterase inhibitors in Alzheimer’s disease

Image result for Br J Clin Pharmacol

“Alzheimer’s Disease (AD) is the most common single cause of dementia in our ageing society. On full assessment and diagnosis of AD, initiation of an AChe inhibitor is recommended as early as possible, it is important that AChe inhibitor therapy is considered for patients with mild to moderate AD.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2014378/

“Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. Hempseed is known for its content in fatty acids, proteins and fiber, which contribute to its nutritional value. Lignanamides 2, 7, 9-14 showed good antioxidant activity among which 7, 10 and 13 also inhibited acetylcholinesterase in vitro. The new identified compounds in this study added to the diversity of hempseed composition and the bioassays implied that hempseed, with lignanamides as nutrients, may be a good source of bioactive and protective compounds.” http://www.ncbi.nlm.nih.gov/pubmed/26585089

“The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia. Our results indicate that hempseed meal (HSM) and linoleic acid are potential candidates for the treatment of Alzheimer’s disease (AD) and cardiovascular disease. These results show that HSM may prove of great utility as a health food, with potential for the prevention of AD and cardiovascular disease.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933972/

Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs.

Image result for Brain Research journal

“Changes in rhythmic activity can serve as early biomarkers of pathological alterations, but it remains unclear how different types of rhythmic activity are altered during neurodegenerative processes.

Glutamatergic neurotoxicity, evoked by kainic acid (KA), causes hyperexcitation and acute seizures that result in delayed brain damage.

We employed wide frequency range (0.1-300 Hz) local field potential recordings in guinea pigs to study the oscillatory activity of the hippocampus, entorhinal cortex, medial septum, and amygdala in healthy animals for three months after KA introduction.

To clarify whether the activation of endocannabinoid (eCB) system can influence toxic KA action, AM404, an eCB reuptake inhibitor, and URB597, an inhibitor of fatty acid amide hydrolase, were applied.

Our results demonstrate the protective potential of the eCB system during excitotoxic influences.”

https://www.ncbi.nlm.nih.gov/pubmed/28192082

Protective effects of trans-caryophyllene on maintaining osteoblast function.

Image result for IUBMB Life.

“Age-related osteoblast dysfunction is the main cause of age-related bone loss.

Trans-caryophyllene (TC) is an important constituent of the essential oils derived from several species of medicinal plants.

In this study, we investigated the effects of TC on osteoblast function in osteoblastic MC3T3-E1 cells. The results indicate that TC caused a significant elevation in collagen content, alkaline phosphatase activity, osteocalcin production, and mineralization, which are the four markers that account for the various stages of osteoblastic differentiation.

Our findings that TC promotes the formation of a mineralized extracellular matrix help to elucidate the role of CB2 signaling in the formation of bone and the maintenance of normal bone mass.”

https://www.ncbi.nlm.nih.gov/pubmed/28026135

“Trans-caryophyllene is a sesquiterpene present in many medicinal plants’ essential oils, such as Ocimum gratissimum and Cannabis sativa.”  https://www.ncbi.nlm.nih.gov/pubmed/24055516

Anti-inflammatory effect of cannabinoid agonist WIN55, 212 on mouse experimental colitis is related to inhibition of p38MAPK.

Image result for World J Gastroenterol

“To investigate the anti-inflammatory effect and the possible mechanisms of an agonist of cannabinoid (CB) receptors, WIN55-212-2 (WIN55), in mice with experimental colitis, so as to supply experimental evidence for its clinical use in future.

These results confirmed the anti-inflammatory effect and protective role of WIN55 on the mice with experimental colitis, and revealed that this agent exercises its action at least partially by inhibiting p38MAPK.

Furthermore, the results showed that SB203580, affected the expression of CB1 and CB2 receptors in the mouse colon, suggesting a close linkage and cross-talk between the p38MAPK signaling pathway and the endogenous CB system.”

https://www.ncbi.nlm.nih.gov/pubmed/27920472

Association of Anandamide with altered Binocular Depth Inversion Illusion in Schizophrenia.

 

Image result for World J Biol Psychiatry.

“Binocular depth inversion illusion (BDII) represents an illusion of visual perception that involves higher-order visual and cognitive processes. Its impairment has been linked to psychotic conditions and identified as a marker for at risk mental states.

The endogenous cannabinoid system (ECS) is involved in various neurophysiological processes. One of its key components, anandamide, is involved in the pathophysiology of schizophrenia.

Little is known about its impact on BDII alterations. Therefore, we explored associations between BDII and anandamide levels.

Conclusions These findings support the hypothesis of an involvement of anandamide in cognitive processes impaired in schizophrenia and are consistent with a protective effect of elevated anandamide levels herein.”

The CB1 Antagonist, SR141716A, Is Protective in Permanent Photothrombotic Cerebral Ischemia.

“Modulation of the endocannabinoid system has been shown to have a significant impact on outcomes in animal models of stroke.

We have previously reported a protective effect of the CB1 antagonist, SR141716A, in a transient reperfusion mouse model of cerebral ischemia. This protective effect was in part mediated by activation of the 5HT1A receptor.

Here we have examined its effect in a mouse model of permanent ischemia induced by photoinjury.

The CB1 antagonist was found to be protective in this model.

As was the case following transient ischemia reperfusion, SR141716A (5mg/kg) resulted in smaller infarct fractions and stroke volumes when utilized both as a pretreatment and as a post-treatment. In contrast to the effect in a transient ischemia model, the pretreatment effect did not depend on the 5HT1A receptor.

Neurological function correlated favorably to the reduction in stroke size when SR141716A was given as a pretreatment.

With the incidence of stroke predicted to rise in parallel with an ever aging population, understanding mechanisms underlying ischemia and therapeutics remains a paramount goal of research.”

http://www.ncbi.nlm.nih.gov/pubmed/27453059

Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 may protect against cognitive impairment in rats of chronic cerebral hypoperfusion via PI3K/AKT signaling.

“The present study further investigated the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase (FAAH) inhibitor URB597 (URB) on chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in rats.

These findings suggest that WIN and URB are promising agents for therapeutic management of CCH.”

http://www.ncbi.nlm.nih.gov/pubmed/27424778

“Chronic cerebral hypoperfusion (CCH) is one of the causes of vascular dementia (VaD) and is also an etiological factor for Alzheimer’s disease (AD).”  http://journal.frontiersin.org/article/10.3389/fnagi.2014.00010/full

Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment.

“Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract.

Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice.

TNBS-induced colitis was attenuated by treatment with Abn-CBD.

Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers.

Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27418880

Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids.

“Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this ‘endocannabinoid system’ in different pathophysiologic processes is beginning to be delineated.

There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ9-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals.

This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose.

Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage.

Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.”

http://www.ncbi.nlm.nih.gov/pubmed/27261847