Therapeutic potential of natural psychoactive drugs for central nervous system disorders: A perspective from polypharmacology.

“In drug development, the creation of highly selective ligands has been unsuccessful for the treatment of central nervous system disorders.

Multi-target ligands, from the polypharmacology paradigm, are being proposed as treatments for these complex disorders, since they offer enhanced efficacy and a strong safety profile.

Natural products are the best examples of multi-target compounds, so they are of high interest within this paradigm.

Additionally, recent research on psychoactive drugs of natural origin, such as ayahuasca and cannabis, has demonstrated promising therapeutic potential for the treatment of some psychiatric and neurological disorders.

In this text, we describe how research on psychoactive drugs can be effectively combined with the polypharmacology paradigm, providing ayahuasca and cannabis research as examples.”

https://www.ncbi.nlm.nih.gov/pubmed/31830883

http://www.eurekaselect.com/177382/article

DMH-cannabidiol, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity by activating A2A receptor and inhibiting p38.

Toxicology and Applied Pharmacology

“Cannabidiol (CBD) is a natural compound with psychoactive therapeutic properties well described. Conversely, the immunological effects of CBD are still poorly explored. In this study, the potential anti-inflammatory effects and underlying mechanisms of CBD and its analog Dimethyl-Heptyl-Cannabidiol (DMH-CBD) were investigated using RAW 264.7 macrophages. CBD and DMH-CBD suppressed LPS-induced TNF production and NF-kB activity in a concentration-dependent manner. Both compounds reduced the NF-kB activity in a μM concentration range: CBD (IC50 = 15 μM) and DMH-CBD (IC50 = 38 μM). However, the concentrations of CBD that mediated NF-kB inhibition were similar to those that cause cytotoxicity (LC50 = 58 μM). Differently, DMH-CBD inhibited the NF-kB activation without cytotoxic effects at the same concentrations, although it provokes cytotoxicity at long-term exposure. The inhibitory action of the DMH-CBD on NF-kB activity was not related to the reduction in IkBα degradation or either p65 (NF-kB) translocation to the nucleus, although it decreased p38 MAP kinase phosphorylation. Additionally, 8-(3-Chlorostyryl) caffeine (CSC), an A2Aantagonist, reversed the effect of DMH-CBD on NF-kB activity in a concentration-dependent manner. Collectively, our results demonstrated that CBD reduced the NF-kB activity at concentrations intimately associated with the reduction in cell viability, DMH-CBD reduce the NF-kB activity and by activating A2A receptors and inhibits p38 phosphorylation.”

https://www.ncbi.nlm.nih.gov/pubmed/30796934

https://www.sciencedirect.com/science/article/pii/S0041008X19300663?via%3Dihub