Activation of Cannabinoid Receptors Promote Periodontal Cell Adhesion and Migration.

Journal of Clinical Periodontology banner“Medical and recreational cannabis use is increasing significantly, but its impacts on oral health remains unclear.

The aim of this study is to investigate the effects of tetrahydrocannabinol (THC), the major active component in cannabis, on periodontal fibroblast cell adhesion and migration to explore its role in periodontal regeneration and wound healing.

RESULTS:

Both CB1 and CB2 were expressed in periodontal tissues but with different expression patterns. THC promoted periodontal cell wound healing by inducing HPLF cell adhesion and migration. This was mediated by focal adhesion kinase (FAK) activation and its modulation of MAPK activities. The effect of cannabinoids on periodontal fibroblast cell adhesion and migration were mainly dependent on the CB2.

CONCLUSION:

These results suggested that cannabinoids may contribute to developing new therapeutics for periodontal regeneration and wound healing.”

https://www.ncbi.nlm.nih.gov/pubmed/31461164

https://onlinelibrary.wiley.com/doi/abs/10.1111/jcpe.13190

Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance.

Image result for Handb Exp Pharmacol.

“Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands’ synthesizing/degrading enzymes.

The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury.

For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects.

New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.”

https://www.ncbi.nlm.nih.gov/pubmed/28161834

Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart.

“Cannabinoid receptor type 2 (CB2) activation is recently reported to promote proliferation of some types of resident stem cells (e.g., hematopoietic stem/progenitor cell or neural progenitor cell).

Resident cardiac progenitor cell (CPC) activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction (MI). This study aims to explore the role and possible mechanisms of CB2 receptor activation in enhancing myocardial repair…

In conclusion, AM1241 could induce myocardial regeneration and improve cardiac function, which might be associated with PI3K/Akt/Nrf2 signaling pathway activation.

Our findings may provide a promising strategy for cardiac endogenous regeneration after MI.”

http://www.ncbi.nlm.nih.gov/pubmed/24430557

Increase of mesenchymal stem cell migration by Cannabidiol via activation of p42/44 MAPK.

“Migration and differentiation of mesenchymal stem cells (MSCs) are known to be involved in various regenerative processes such as bone healing.

The present study therefore focussed on cannabinoids which have been demonstrated to exhibit tissue healing properties…

Collectively, this study demonstrates CBD to promote the migration of MSCs via activation of the CB2 receptor and inhibition of GPR55 and to induce osteoblastic differentiation. CBD may therefore recruit MSCs to sites of calcifying tissue regeneration and subsequently support bone regeneration via an osteoanabolic action on MSCs.”

http://www.ncbi.nlm.nih.gov/pubmed/24304686