Inhibition of tremulous jaw movements in rats by memantine-Δ9 -tetrahydrocannabinol combination: neuroanatomical correlates.

British Journal of Pharmacology banner“Memantine and marijuana smoking have been previously found to inhibit tremor in parkinsonian patients, however, the observed effects were relatively weak. The tremorolytic efficacy of memantine and cannabinoid co-administration is unstudied.

This work aimed to evaluate antitremor activity of memantine-Δ9 -tetrahydrocannabinol combination; additionally, the involvement of some neuroanatomical structures in the regulation of the combination effect was evaluated.

EXPERIMENTAL APPROACH:

Haloperidol-induced tremulous jaw movements in rats were used as a model of parkinsonian-like tremor. To evaluate the role of central receptor systems in the drug effect, receptor-targeting agents were administered locally into certain brain areas.

KEY RESULTS:

Memantine and Δ9 -tetrahydrocannabinol alone were without effect, however, co-administration of the drugs significantly decreased number of haloperidol-induced jaw movements. The antitremor activity of the combination was antagonized (i) by injections of L-glutamate into the dorsal striatum, entopeduncular nucleus, substantia nigra pars reticulata, globus pallidus, supratrigeminal and trigeminal motor nuclei but not into the subthalamic and cuneiform nuclei; (ii) by injections of CGS 21680 into the ventrolateral striatum; (iii) by injections of bicuculline into the rostral part of the parvicellular reticular nucleus.

CONCLUSION AND IMPLICATIONS:

Memantine and Δ9 -tetrahydrocannabinol supra-additively inhibit haloperidol-induced tremulous jaw movements. Apparently, the co-administration of the drugs might be a new approach to the treatment of tremor. The presented results identify brain areas influencing parkinsonian-like tremor in rats; these data can help advance the development of novel treatments for repetitive involuntary movements.”

https://www.ncbi.nlm.nih.gov/pubmed/31696510

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14914

Memantine is a prescription drug used to treat moderate to severe confusion (dementia) related to Alzheimer’s disease. Memantine is available under the following different brand names: Namenda XR, and Namenda.”  https://www.rxlist.com/consumer_memantine_namenda/drugs-condition.htm

A role for cannabinoids in the treatment of myotonia? Report of compassionate use in a small cohort of patients.

“The symptomatic treatment of myotonia and myalgia in patients with dystrophic and non-dystrophic myotonias is often not satisfactory.

Some patients anecdotally report symptoms’ relief through consumption of cannabis.

METHODS:

A combination of cannabidiol and tetrahydrocannabinol (CBD/THC) was prescribed as compassionate use to six patients (four patients with myotonic dystrophy types 1 and 2, and 2 patients with CLCN1-myotonia) with therapy-resistant myotonia and myalgia. CBD/THC oil was administered on a low dose in the first 2 weeks and adjusted to a higher dose in the following 2 weeks. Myotonia behaviour scale (MBS), hand-opening time, visual analogue scales (VAS) for myalgia and myotonia, and fatigue and daytime sleepiness severity scale (FSS, ESS) were performed weekly to monitor treatment response.

RESULTS:

All patients reported an improvement of myotonia especially in weeks 3 and 4 of treatment: MBS improved of at least 2 points in all patients, the hand-opening time variously improved in 5 out of 6 patients. Chronic myalgia was reported by both DM2 patients at baseline, one of them experienced a significant improvement of myalgia under treatment. Some gastrointestinal complaints, as abdominal pain and diarrhoea, improved in 3 patients; however, 4 out of 6 patients reported new-onset constipation. No other relevant side effect was noticed.

CONCLUSIONS:

These first empirical results suggest a potentially beneficial role of CBD/THC in alleviating myotonia and should encourage further research in this field including a randomized-controlled trial on larger cohorts.”

https://www.ncbi.nlm.nih.gov/pubmed/31655890

https://link.springer.com/article/10.1007%2Fs00415-019-09593-6

“Myotonia is a medical term that refers to a neuromuscular condition in which the relaxation of a muscle is impaired.” https://www.ninds.nih.gov/Disorders/All-Disorders/Myotonia-Information-Page

Effects of Cannabis and Its Components on the Retina: A Systematic Review.

 Publication Cover“Cannabis is the most prevalent drug in the world and its consumption is growing. Cannabinoid receptors are present in the human central nervous system. Recent studies show evidence of the effects of cannabinoids on the retina, and synthesizing the results of these studies may be relevant for ophthalmologists. Thus, this review adopts standardized, systematic review methodology to investigate the effects of exposure to cannabis and components on the retina.

RESULTS:

We retrieved 495 studies, screened 229 studies, assessed 52 studies for eligibility, and included 16 studies for qualitative analysis. The cannabinoids most frequently investigated were delta-9-tetrahydrocannabinol (THC), abnormal cannabidiol, synthetic cannabinoid, and cannabidiol (CDB). The outcomes most studied were neuroretinal dysfunction, followed by vascular effects. The studies also included investigation of neuroprotective and anti-inflammatory effects and teratogenic effects.

CONCLUSIONS:

This review suggests that cannabinoids may have an important role in retinal processing and function.”

https://www.ncbi.nlm.nih.gov/pubmed/31648567

https://www.tandfonline.com/doi/abs/10.1080/15569527.2019.1685534?journalCode=icot20

Acute and residual effects of smoked cannabis: Impact on driving speed and lateral control, heart rate, and self-reported drug effects

 Drug and Alcohol Dependence“Although driving under the influence of cannabis is increasingly common among young adults, little is known about residual effects on driver behavior.

This study examined acute and residual effects of smoked cannabis on simulated driving performance of young cannabis users.

Methods

In this double-blind, placebo-controlled, parallel-group randomized clinical trial, cannabis users (1-4 days/week) aged 19-25 years were randomized with a 2:1 allocation ratio to receive active (12.5% THC) or placebo (0.009% THC) cannabis in a single 750 mg cigarette. A median split (based on whole-blood THC concentrations at the time of driving) was used to divide the active group into low and high THC groups. Our primary outcome was simulated driving performance, assessed 30 minutes and 24 and 48 hours after smoking. Secondary outcomes included blood THC concentrations, subjective drug effects, and heart rate.

Results

Ninety-six participants were randomized, and 91 were included in the final analysis (30 high THC, 31 low THC, 30 placebo). Mean speed (but not lateral control) significantly differed between groups 30 minutes after smoking cannabis (p ≤ 0.02); low and high THC groups decreased their speed compared to placebo. Heart rate, VAS drug effect and drug high increased significantly immediately after smoking cannabis and declined steadily after that. There was little evidence of residual effects in any of the measures.

Conclusion

Acutely, cannabis caused decreased speed, increased heart rate, and increases in VAS drug effect and drug high. There was no evidence of residual effects on these measures over the two days following cannabis administration.

Smoked cannabis (12.5% THC) led to an acute decrease in speed in young adults. There was no clear effect of smoked cannabis on lateral control. There was little evidence of residual effects of smoked cannabis on driving performance.”

https://www.sciencedirect.com/science/article/abs/pii/S0376871619304181

‘Standard THC Units’: a proposal to standardise dose across all cannabis products and methods of administration.

Publication cover image“Cannabis products are becoming increasingly diverse, and they vary considerably in concentrations of ∆9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). Higher doses of THC can increase the risk of harm from cannabis, while CBD may partially offset some of these effects. Lower Risk Cannabis Use Guidelines currently lack recommendations based on quantity of use, and could be improved by implementing standard units. However, there is currently no consensus on how units should be measured or standardised across different cannabis products or methods of administration.

ARGUMENT:

Existing proposals for standard cannabis units have been based on specific methods of administration (e.g. joints) and these may not capture other methods including pipes, bongs, blunts, dabbing, vaporizers, vape pens, edibles and liquids. Other proposals (e.g. grams of cannabis) cannot account for heterogeneity in THC concentrations across different cannabis products. Similar to alcohol units, we argue that standard cannabis units should reflect the quantity of active pharmacological constituents (dose of THC). On the basis of experimental and ecological data, public health considerations, and existing policy we propose that a ‘Standard THC Unit’ should be fixed at 5 milligrams of THC for all cannabis products and methods of administration. If supported by sufficient evidence in future, consumption of Standard CBD Units might offer an additional strategy for harm reduction.

CONCLUSIONS:

Standard THC Units can potentially be applied across all cannabis products and methods of administration to guide consumers and promote safer patterns of use.”

https://www.ncbi.nlm.nih.gov/pubmed/31606008

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14842

The Effects of Dosage-Controlled Cannabis Capsules on Cancer-Related Cachexia and Anorexia Syndrome in Advanced Cancer Patients: Pilot Study.

Image result for integrative cancer therapies“Cancer-related cachexia and anorexia syndrome (CACS) is a common phenomenon in cancer patients. Cannabis has been suggested to stimulate appetite but research on this issue has yielded mixed results. The current study aimed to evaluate the effect of dosage-controlled cannabis capsules on CACS in advanced cancer patients.

Methods: The cannabis capsules used in this study contained two fractions of oil-based compounds. The planned treatment was 2 × 10 mg per 24 hours for six months of tetrahydrocannabinol (THC) 9.5 mg and cannabidiol (CBD) 0.5 mg. If patients suffered from side effects, dosage was reduced to 5 mg × 2 per day (THC 4.75 mg, CBD 0.25 mg). Participants were weighed on every physician visit. The primary objective of the study was a weight gain of ≥10% from baseline.

Results: Of 24 patients who signed the consent form, 17 started the cannabis capsules treatment, but only 11 received the capsules for more than two weeks. Three of six patients who completed the study period met the primary end-point. The remaining three patients had stable weights. In quality of life quaternaries, patients reported less appetite loss after the cannabis treatment (p=0.05). Tumor necrosis factor-α (TNF-α) levels decreased after the cannabis treatment but without statistical significance. According to patients’ self-reports, improvement in appetite and mood as well as a reduction in pain and fatigue was demonstrated.

Conclusions: Despite various limitations, this preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) patients with doses of 5mgx1 or 5mgx2 capsules daily, without significant side effects. The results justify a larger study with dosage-controlled cannabis capsules in CACS.”

https://www.ncbi.nlm.nih.gov/pubmed/31595793

“The primary objective of the study was a weight gain of ≥10% from baseline. Despite various limitations, the current preliminary study demonstrated a weight increase of ≥10% in 3/17 (17.6%) of the patients with doses of 5 mg × 1 or 5 mg × 2 capsules daily, without significant side effects.”

https://journals.sagepub.com/doi/10.1177/1534735419881498

Δ9-Tetrahydrocannabinol Derivative-Loaded Nanoformulation Lowers Intraocular Pressure in Normotensive Rabbits.

“Δ9-Tetrahydrocannabinol-valine-hemisuccinate, a hydrophilic prodrug of Δ9-tetrahydrocannabinol, synthesized with the aim of improving the ocular bioavailability of the parent molecule, was investigated in a lipid-based nanoparticle dosage form for ocular delivery.

RESULTS:

A peak intraocular pressure (IOP) drop of 30% from baseline was observed in rabbits treated with SLNs loaded with Δ9-tetrahydrocannabinol-valine-hemisuccinate at 90 minutes. Treated eyes of rabbits receiving Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs had significantly lower IOP than untreated eyes until 360 minutes, whereas the group receiving the emulsion formulation showed a drop in IOP until 90 minutes only. In comparison to marketed pilocarpine and timolol maleate ophthalmic solutions, Δ9-tetrahydrocannabinol-valine-hemisuccinate SLNs produced a greater effect on IOP in terms of both intensity and duration. In terms of tissue concentrations, significantly higher concentrations of Δ9-tetrahydrocannabinol-valine-hemisuccinate were observed in iris-ciliary bodies and retina-choroid with SLNs.

CONCLUSION:

Δ9-Tetrahydrocannabinol-valine-hemisuccinate formulated in a lipid-based nanoparticulate carrier shows promise in glaucoma pharmacotherapy.

TRANSLATIONAL RELEVANCE:

Glaucoma therapies usually focus on decreased aqueous humor production and increased outflow. However, such therapy is not curative, and there lies a need in preclinical research to focus efforts on agents that not only affect the aqueous humor dynamics but also provide neuroprotection. Historically, there have been bench-scale studies looking at retinal ganglion cell death post-axonal injury. However, for a smooth translation of this in vitro activity to the clinic, animal models examining IOP reduction, i.e., connecting the neuroprotective activity to a measurable outcome in glaucoma management (IOP), need to be investigated. This study investigated the IOP reduction efficacy of cannabinoids for glaucoma pharmacotherapy in a normotensive rabbit model, bringing forth a new class of agents with the potential of IOP reduction and improved permeation to the back of the eye, possibly providing neuroprotective benefits in glaucoma management.”

https://www.ncbi.nlm.nih.gov/pubmed/31588378

“THC has been demonstrated to be effective in glaucoma management, helping to lower IOP in human subjects after smoking marijuana; however, the molecule fails to manifest a similar effect when dosed topically. This research explores molecular bioengineering and formulation-based strategies to improve the ocular bioavailability of THC, facilitating the molecule to translate into a dosage form capable of demonstrating a desired IOP-lowering effect even on topical application. These studies suggest that formulation development efforts along with prodrug derivatization can effectively improve the overall ocular bioavailability of THC. Thus, THC-VHS represents a potential new therapy option for the treatment and management of glaucoma by virtue of its superiority in lowering IOP when compared to antiholinergic and beta blockers, as studied in this model.”

How does cannabidiol (CBD) influence the acute effects of delta-9-tetrahydrocannabinol (THC) in humans? A systematic review.

Neuroscience & Biobehavioral Reviews“The recent liberalisation of cannabis regulation has increased public and scientific debate about its potential benefits and risks. A key focus has been the extent to which cannabidiol (CBD) might influence the acute effects of delta-9-tetrahydrocannabinol (THC), but this has never been reviewed systematically. In this systematic review of how CBD influences the acute effects of THC we identified 16 studies involving 466 participants. Ten studies were judged at low risk of bias. The findings were mixed, although CBD was found to reduce the effects of THC in several studies. Some studies found that CBD reduced intense experiences of anxiety or psychosis-like effects of THC and blunted some of the impairments on emotion and reward processing. However, CBD did not consistently influence the effects of THC across all studies and outcomes. There was considerable heterogeneity in dose, route of administration and THC:CBD ratio across studies and no clear dose-response profile emerged. Although findings were mixed, this review suggests that CBD may interact with some acute effects of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/31580839

“CBD influenced the effects of THC in some but not all studies. Several studies found that CBD reduced the acute effects of THC. CBD may reduce intense experiences of anxiety or psychosis-like effects of THC. CBD may blunt effects of THC on emotion and reward processing. CBD did not alter subjective intoxication or psychomotor effects of THC. CBD may influence the benefits and harms of cannabis”

https://www.sciencedirect.com/science/article/pii/S0149763419305615?via%3Dihub

Beyond THC and Endocannabinoids.

Image result for AR Annual Reviews“Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed. ”

https://www.ncbi.nlm.nih.gov/pubmed/31580774

https://www.annualreviews.org/doi/10.1146/annurev-pharmtox-010818-021441

Cannabidiol Counteracts the Psychotropic Side-Effects of Δ-9-Tetrahydrocannabinol in the Ventral Hippocampus Through Bi-Directional Control of ERK1-2 Phosphorylation

Journal of Neuroscience“Evidence suggests that the phytocannabinoids Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) differentially regulate salience attribution and psychiatric risk. The ventral hippocampus (vHipp) relays emotional salience via control of dopamine (DA) neuronal activity states, which are dysregulated in psychosis and schizophrenia. Using in-vivo electrophysiology in male Sprague Dawley rats, we demonstrate that intra-vHipp THC strongly increases ventral tegmental area (VTA) DA neuronal frequency and bursting rates, decreases GABA frequency, and amplifies VTA beta, gamma and epsilon oscillatory magnitudes via modulation of local extracellular signal-regulated kinase phosphorylation (pERK1-2). Remarkably, whereas intra-vHipp THC also potentiates salience attribution in morphine place-preference and fear conditioning assays, CBD co-administration reverses these changes by down-regulating pERK1-2 signaling, as pharmacological re-activation of pERK1-2 blocked the inhibitory properties of CBD. These results identify vHipp pERK1-2 signaling as a critical neural nexus point mediating THC-induced affective disturbances and suggest a potential mechanism by which CBD may counteract the psychotomimetic and psychotropic side-effects of THC.

SIGNIFICANCE STATEMENT

Strains of marijuana with high levels of delta-9-tetrahydrocannabinol (THC) and low levels of cannabidiol (CBD) have been shown to underlie neuropsychiatric risks associated with high potency cannabis use. However, the mechanisms by which CBD mitigates the side effects of THC have not been identified. We demonstrate that THC induces cognitive and affective abnormalities resembling neuropsychiatric symptoms directly in the hippocampus, while dysregulating dopamine activity states and amplifying oscillatory frequencies in the ventral tegmental area via modulation of the extracellular signal-regulated kinase (ERK) signaling pathway. In contrast, CBD co-administration blocked THC-induced ERK phosphorylation, and prevented THC-induced behavioural and neural abnormalities. These findings identify a novel molecular mechanism that may account for how CBD functionally mitigates the neuropsychiatric side-effects of THC.”

https://www.ncbi.nlm.nih.gov/pubmed/31570536

https://www.jneurosci.org/content/early/2019/09/27/JNEUROSCI.0708-19.2019

“Western University researchers show how CBD blocks side-effects of THC in cannabis. Research out of Western University is showing for the first time how cannabidiol (CBD) helps to lessen negative psychiatric side effects of tetrahydrocannabinol (THC) in cannabis.”  https://globalnews.ca/news/5970908/western-university-research-cbd-thc-cannabis/

“Cannabis study reveals how CBD offsets the psychiatric side-effects of THC”  https://neurosciencenews.com/cbd-thc-psychosis-15002/