Absence of Entourage: Terpenoids Commonly Found in Cannabis sativa Do Not Modulate the Functional Activity of Δ9-THC at Human CB1 and CB2 Receptors.

 View details for Cannabis and Cannabinoid Research cover image“Compounds present in Cannabis sativa such as phytocannabinoids and terpenoids may act in concert to elicit therapeutic effects. Cannabinoids such as Δ9-tetrahydrocannabinol (Δ9-THC) directly activate cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2); however, it is not known if terpenoids present in Cannabis also affect cannabinoid receptor signaling. Therefore, we examined six common terpenoids alone, and in combination with cannabinoid receptor agonists, on CB1 and CB2 signaling in vitro.

Results: α-Pinene, β-pinene, β-caryophyllene, linalool, limonene, and β-myrcene (up to 30-100 μM) did not change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids did not affect the hyperpolarization produced by Δ9-THC (10 μM): (CB1: control, 59%±7%; with terpenoids (10 μM each) 55%±4%; CB2: Δ9-THC 16%±5%, with terpenoids (10 μM each) 17%±4%). To investigate possible effect on desensitization of CB1 responses, all six terpenoids were added together with Δ9-THC and signaling measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 min the control hyperpolarization recovered by 63%±6% in the presence of the terpenoids recovery was 61%±5%.

Discussion: None of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or modulated the signaling of the phytocannabinoid agonist Δ9-THC. These results suggest that if a phytocannabinoid-terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids activate CB1 and CB2 signaling pathways that do not involve potassium channels; however, it seems more likely that they may act at different molecular target(s) in the neuronal circuits important for the behavioral effect of Cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31559333

https://www.liebertpub.com/doi/10.1089/can.2019.0016

“Terpenoids and Phytocannabinoids Co-Produced in Cannabis Sativa Strains Show Specific Interaction for Cell Cytotoxic Activity. We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence.”  https://www.ncbi.nlm.nih.gov/pubmed/31438532

Medical cannabis for inflammatory bowel disease: real-life experience of mode of consumption and assessment of side-effects.

 

Image result for ovid journal“Use of medical cannabis for improving symptoms of inflammatory bowel disease is increasing. However, reports on long-term outcomes are lacking. This prospective, observational study assessed the effects of licensed cannabis use among patients with inflammatory bowel disease.

METHODS:

Dose and mode of consumption, adverse events, use of other medications, and long-term effects were evaluated among 127 patients with inflammatory bowel disease using legalized medical cannabis. Blood count, albumin, and C-reactive protein were assessed before, 1 month, and at least 1 year after medical cannabis therapy was initiated. Questionnaires on disease activity, patient function, and signs of addiction were completed by patients and by a significant family member to assess its effects.

RESULTS:

The average dose used was 31 ± 15 g/month. The average Harvey-Bradshaw index improved from 14 ± 6.7 to 7 ± 4.7 (P < 0.001) during a median follow-up of 44 months (interquartile range, 24-56 months). There was a slight, but statistically significant, average weight gain of 2 kg within 1 year of cannabis use. The need for other medications was significantly reduced. Employment among patients increased from 65 to 74% (P < 0.05). We conclude that the majority of inflammatory bowel disease patients using cannabis are satisfied with a dose of 30 g/month. We did not observe negative effects of cannabis use on the patients’ social or occupational status.

CONCLUSIONS:

Cannabis use by inflammatory bowel disease patients can induce clinical improvement and is associated with reduced use of medication and slight weight gain. Most patients respond well to a dose of 30 g/month, or 21 mg Δ9-tetra- hydrocannabinol (THC) and 170 mg Cannabidiol (CBD) per day.”

Δ9-Tetrahydrocannabinol During Adolescence Attenuates Disruption of Dopamine Function Induced in Rats by Maternal Immune Activation.

Image result for frontiers in behavioral neuroscience“Here, we hypothesized that adolescent Δ9-tetrahydrocannabinol (THC) worsens the impact of prenatal maternal immune activation (MIA) on ventral tegmental area (VTA) dopamine cells in rat offspring.

Adolescent THC attenuated several MIA-induced effects.

Contrary to our expectations, adolescent THC did not worsen MIA-induced deficits.”

https://www.ncbi.nlm.nih.gov/pubmed/31551729

https://www.frontiersin.org/articles/10.3389/fnbeh.2019.00202/full

Medical cannabis for chronic pain: can it make a difference in pain management?

 “Globally, chronic pain is a major therapeutic challenge and affects more than 15% of the population. As patients with painful terminal diseases may face unbearable pain, there is a need for more potent analgesics.

Although opioid-based therapeutic agents received attention to manage severe pain, their adverse drug effects and mortality rate associated with opioids overdose are the major concerns.

Evidences from clinical trials showed therapeutic benefits of cannabis, especially delta-9-tetrahydrocannabinol and cannabinoids reduced neuropathic pain intensity in various conditions. Also, there are reports on using combination cannabinoid therapies for chronic pain management.

The association of cannabis dependence and addiction has been discussed much and the reports mentioned that it can be comparatively lower than other substances such as nicotine and alcohol.

More countries have decided to legalise the medicinal use of cannabis and marijuana.

Healthcare professionals should keep themselves updated with the changing state of medical cannabis and its applications.”

https://www.ncbi.nlm.nih.gov/pubmed/31535218

https://link.springer.com/article/10.1007%2Fs00540-019-02680-y

Modulation of the endocannabinoid system: vulnerability factor and new treatment target for stimulant addiction

Image result for frontiers in psychiatry“Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction.

This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction.

A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants.

Interestingly, emerging human data supports a role for ECBS modulation in vulnerability to psychostimulant addiction, and more significantly in addictive behaviors among dependent individuals. Accumulating evidence thus points to the ECBS as a critical target for the development of pharmacotherapies for the treatment of addiction to psychostimulants.

Given the various neuropharmacological actions of exogenous cannabinoids, and their ability to modulate the acute reinforcing effects of drugs, data on Δ9-THC and CBD is particularly promising as to the potential use of cannabinoids in relapse prevention strategies for psychostimulant-dependent individuals.”

https://www.frontiersin.org/articles/10.3389/fpsyt.2013.00109/full

The effects of cannabis, cannabinoids, and their administration routes on pain control efficacy and safety: A systematic review and network meta-analysis.

“To determine the effects of cannabis, cannabinoids, and their administration routes on pain and adverse euphoria events.

Randomized controlled trials investigating the effects of cannabis or cannabinoids on pain reduction.

RESULTS:

A total of 25 studies involving 2270 patients were included. We found that delta-9-tetrahydrocannabinol/cannabidiol (THC/CBD) (oromucosal route), THC (oromucosal route), and standardized dried cannabis (with THC; SCT; inhalation route) could reduce neuropathic pain score (SMD -0.41, 95% CI -0.7 to -0.1; -0.61, 95% CI -1.2 to -0.02; and -0.77, 95% CI -1.4 to -0.2; respectively). For nociceptive pain, only standardized cannabis extract (with THC; SCET) via oral route could reduce pain score (SMD -1.8, 95% C; -2.4 to -1.2). In cancer pain, THC/CBD via oromucosal route and THC via oral or oromucosal route could reduce pain score (SMD -0.7, 95% CI -1.2 to -0.2; and -2.1, 95% CI -2.8 to -1.4; respectively). No study was observed for THC/CBD via oral route or inhalation or THC via inhalation for cancer and nociceptive pain, SCET via oromucosal route or inhalation for neuropathic and cancer pain, THC via oromucosal route for nociceptive pain, and SCT via oromucosal or oral route for neuropathic, cancer, and nociceptive pain. Statistically significant increased risks of euphoria were observed in THC/CBD (oromucosal), THC (oromucosal), and SCT (inhalation).

CONCLUSION:

The use of cannabis and cannabinoids via certain administration routes could reduce different types of pain. Product developers could consider our findings as part of their product design so that the effective route of cannabis and cannabinoids for pain control can be achieved.”

https://www.ncbi.nlm.nih.gov/pubmed/31495691

https://www.japha.org/article/S1544-3191(19)30353-X/fulltext

Combination of Cannabinoids, Δ9- Tetrahydrocannabinol and Cannabidiol, Ameliorates Experimental Multiple Sclerosis by Suppressing Neuroinflammation Through Regulation of miRNA-Mediated Signaling Pathways.

 Image result for frontiers in immunology“Multiple sclerosis (MS) is a chronic and disabling disorder of the central nervous system (CNS) characterized by neuroinflammation leading to demyelination.

Recently a combination of Δ9-tetrahydrocannabinol (THC) and Cannabidiol (CBD) extracted from Cannabis has been approved in many parts of the world to treat MS-related spasticity. THC+CBD combination was also shown to suppresses neuroinflammation, although the mechanisms remain to be further elucidated.

In the current study, we demonstrate that THC+CBD combination therapy (10 mg/kg each) but not THC or CBD alone, attenuates murine experimental autoimmune encephalomyelitis (EAE) by reducing neuroinflammation and suppression of Th17 and Th1 cells.

Collectively, this study suggests that combination of THC+CBD suppresses neuroinflammation and attenuates clinical EAE development and that this effect is associated with changes in miRNA profile in brain-infiltrating cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31497013

“Combination of THC+CBD has been used to treat human MS. This treatment is known to decrease not only muscle spasticity but also suppress neuroinflammation.”

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01921/full

Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol:cannabidiol (THC:CBD).

Image result for bmc neurology“Treatment of spasticity poses a major challenge in amyotrophic lateral sclerosis (ALS) patient management.

Delta-9-tetrahydrocannabinol (THC):cannabidiol (CBD) oromucosal spray (THC:CBD), approved for the treatment of spasticity in multiple sclerosis, serves as a complementary off-label treatment option in ALS-related spasticity.

The mean dose THC:CBD were 5.5 daily actuations (range < 1 to 20). Three subgroups of patients were identified: 1) high-dose daily use (≥ 7 daily actuations, 34%, n = 11), 2) low-dose daily use (< 7 daily actuations, 50%, n = 16), 3) infrequent use (< 1 daily actuation, 16%, n = 5). Overall NPS was + 4.9 (values above 0 express a positive recommendation to fellow patients). Remarkably, patients with moderate to severe spasticity (NRS ≥ 4) reported a high recommendation rate (NPS: + 29) in contrast to patients with mild spasticity (NRS < 4; NPS: - 44). For the three main domains of TSQM-9 high mean satisfaction levels were found (maximum value 100): effectiveness 70.5 (±22.3), convenience 76.6 (±23.3) and global satisfaction 75.0 (±24.7).

CONCLUSION:

THC:CBD is used in a wide dose range suggesting that the drug was applied on the basis of individual patients’ needs and preferences. Contributing to this notion, moderate to severe spasticity was associated with an elevated number of daily THC:CBD actuations and stronger recommendation rate (NPS) as compared to patients with mild spasticity. Overall, treatment satisfaction (TSQM-9) was high. The results suggest that THC:CBD may serve as a valuable addition in the spectrum of symptomatic therapy in ALS. However, prospective studies and head-to-head comparisons to other spasticity medications are of interest to further explore the effectiveness of THC:CBD in the management of spasticity, and other ALS-related symptoms.”

“Overall, patients reported outcomes as assessed by TSQM-9 revealed a high treatment satisfaction with THC:CBD. The results of our study suggest that THC:CBD may serve as an important addition to the spectrum of treatment options of spasticity in ALS.”

[Dronabinol in geriatric pain and palliative care patients : A retrospective evaluation of statutory-health-insurance-covered outpatient medical treatment].

 

“Geriatric patients often suffer from a long history of pain and have a limited life expectancy.

Cannabinoid receptor agonists like dronabinol may be an effective, low-risk treatment option for geriatric patients with chronic pain.

OBJECTIVES:

The effectiveness and side effects of dronabinol therapy in geriatric patients are analyzed. The effects of the approval requirement are presented.

RESULTS:

By using dronabinol, 21 of the 40 geriatric patients (52.5%) achieved pain relief of more than 30%, 10% of the patients of more than 50%. On average, about four symptoms or side effects related to previous treatment were positively influenced. 26% of patients reported side effects. The rejection rates on the part of the health insurances were 38.7% (group A) and 10.3% (group B).

CONCLUSIONS:

This study is one of the few analyses of the use of Dronabinol in geriatric patients. We show that cannabis-based drugs (in this case dronabinol) are an effective, low-risk treatment option that should be considered early in therapy. Regarding the indication spectrum, further clinical studies and an approval-free test phase are necessary.”

https://www.ncbi.nlm.nih.gov/pubmed/31473816

https://link.springer.com/article/10.1007%2Fs00482-019-00408-1

Cannabis-based treatments as an alternative remedy for epilepsy

Integrative Medicine Research“Much of the initial reports for cannabis use in seizure control centered on the compound 9-Δ-tetrahydrocannabinol (THC). However, due to the psychoactive properties of THC potential utility was somewhat limited and recent research has focused on non-psychoactive compounds such as cannabidiol (CBD).

The anti-seizure effects of CBD may come from mechanisms such as functional agonism or antagonism at several 7-transmembrane receptors, ion channels, and neurotransmitter transporters.

Recently, another compound that also is without psychoactive effects known as CBDV has also shown anti-seizure properties both in vivo and in vitro.

Many reports exist on illicit cannabis use through the smoking of marijuana by patients as a self-treatment.

Cannabis and cannabis-based treatments offer promising alternatives to traditional antiepileptic drugs (AEDs).

Due to the unfortunate fact that many patients suffer from Drug-resistant epilepsy (DRE), cannabis-based treatments have great value.

Cannabis-based treatments offer some patients with DRE a great remedy for their condition with limited side effects.

This option may prevent some patients with DRE from needing to consider more invasive options such as surgical interventions. In case studies, open label studies, and RCTs, one can see drastic improvements in the frequency of seizures in patients with certain forms of epilepsy.

It is imperative to continue research into cannabis as a potential primary treatment for epilepsy, particularly those with DRE, to help improve quality of life for millions of people suffering from epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31463193

https://www.sciencedirect.com/science/article/pii/S221342201930157X?via%3Dihub