“Plasmacytoid dendritic cells (pDCs) play a crucial role in host antiviral immune response through secretion of type I interferon. Interferon alpha (IFNα), a type I IFN, is critical for mounting the initial response to viral pathogens. A consequence of Human Immunodeficiency Virus-1 (HIV) infection is a decrease in both pDC number and function, but prolonged pDC activity has been linked with progression from HIV infection to the development of AIDS. Patients with HIV in the United States routinely use cannabinoid-based therapies to combat the side effects of HIV infection and antiretroviral therapy. However, cannabinoids, including Δ-tetrahydrocannabinol (THC), are well-characterized immunosuppressants. Here, we report that THC suppressed secretion of IFNα by pDC from both healthy and HIV+ donors through a mechanism involving impaired phosphorylation of interferon regulatory factor 7. These results suggest that THC can suppress pDC function during the early host antiviral response by dampening pDC activation.”
Tag Archives: tetrahydrocannabinol
Confirmed marijuana use and lymphocyte count in black people living with HIV
“Marijuana is a commonly used recreational substance with purported analgesic and mood enhancing properties. Many people living with HIV identify marijuana as a palliative substance.
However, through its main psychoactive component, tetrahydrocannabinol (THC), is known to influence the immune system. The effects of marijuana use in people with HIV are still controversial, with very scant literature in Black adults.
The current study determined the differences in the lymphocyte count, specifically the number cluster differentiation 4 and 8 (CD4+ and CD8+), among patients who urine drug tested negative for THC (n = 70) and those who tested positive for THC (n = 25).” HTTP://WWW.SCIENCEDIRECT.COM/SCIENCE/ARTICLE/PII/S037687161730412X
“After adjusting for demographic and HIV-related covariates, THC-positive patients had significantly higher CD4+ and CD8+ counts than their THC-negative counterparts.” http://www.drugandalcoholdependence.com/article/S0376-8716(17)30412-X/fulltext
“These results extend previous HIV-related immunity findings in an underrepresented group, and suggest that THC use does not reduce immune function as measured by CD count. Further research is warranted on the overall effects of THC on immune function in HIV positive patients.” https://www.ncbi.nlm.nih.gov/pubmed/28850903
Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads.
“The golden age of cannabis pharmacology began in the 1960s as Raphael Mechoulam and his colleagues in Israel isolated and synthesized cannabidiol, tetrahydrocannabinol, and other phytocannabinoids. Initially, THC garnered most research interest with sporadic attention to cannabidiol, which has only rekindled in the last 15 years through a demonstration of its remarkably versatile pharmacology and synergy with THC. Gradually a cognizance of the potential of other phytocannabinoids has developed. Contemporaneous assessment of cannabis pharmacology must be even far more inclusive. Medical and recreational consumers alike have long believed in unique attributes of certain cannabis chemovars despite their similarity in cannabinoid profiles. This has focused additional research on the pharmacological contributions of mono- and sesquiterpenoids to the effects of cannabis flower preparations. Investigation reveals these aromatic compounds to contribute modulatory and therapeutic roles in the cannabis entourage far beyond expectations considering their modest concentrations in the plant. Synergistic relationships of the terpenoids to cannabinoids will be highlighted and include many complementary roles to boost therapeutic efficacy in treatment of pain, psychiatric disorders, cancer, and numerous other areas. Additional parts of the cannabis plant provide a wide and distinct variety of other compounds of pharmacological interest, including the triterpenoid friedelin from the roots, canniprene from the fan leaves, cannabisin from seed coats, and cannflavin A from seed sprouts. This chapter will explore the unique attributes of these agents and demonstrate how cannabis may yet fulfil its potential as Mechoulam’s professed “pharmacological treasure trove.””
https://www.ncbi.nlm.nih.gov/pubmed/28826544
http://www.sciencedirect.com/science/article/pii/S1054358917300273?via%3Dihub
CB1 and CB2 Receptor Pharmacology.
“The CB1 and CB2 cannabinoid receptors (CB1R, CB2R) are members of the G protein-coupled receptor (GPCR) family that were identified over 20 years ago. CB1Rs and CB2Rs mediate the effects of Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive constituent of marijuana, and subsequently identified endogenous cannabinoids (endocannabinoids) anandamide and 2-arachidonoyl glycerol. CB1Rs and CB2Rs have both similarities and differences in their pharmacology. Both receptors recognize multiple classes of agonist and antagonist compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. This chapter will discuss their pharmacological characterization, distribution, phylogeny, and signaling pathways. In addition, the effects of extended agonist exposure and how that affects signaling and expression patterns of the receptors are considered.”
https://www.ncbi.nlm.nih.gov/pubmed/28826534
http://www.sciencedirect.com/science/article/pii/S1054358917300340?via%3Dihub
The orphan receptor GPR55 is a novel cannabinoid receptor
“Preparations of Cannabis sativa have been used for medicinal and recreational purposes for at least 4000 years and extracts of C. sativa contain over 60 different pharmacologically active components the most prominent being Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol
Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55.
These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1and CB2 described here will permit delineation of its physiological function(s).”
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095107/
The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.
“The lipophilic phytocannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL with resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized compounds that currently cannot be administered orally.”
https://www.ncbi.nlm.nih.gov/pubmed/28736128
http://www.sciencedirect.com/science/article/pii/S0928098717304025
Delta-9-tetrahydrocannabinol decreases masticatory muscle sensitization in female rats through peripheral cannabinoid receptor activation.
“This study investigated whether intramuscular injection of delta-9-tetrahydrocannabinol (THC), by acting on peripheral cannabinoid (CB) receptors, could decrease nerve growth factor (NGF)-induced sensitization in female rat masseter muscle; a model which mimics the symptoms of myofascial temporomandibular disorders.
It was found that CB1 and CB2 receptors are expressed by trigeminal ganglion neurons that innervate the masseter muscle and also on their peripheral endings.
These results suggest that reduced inhibitory input from the peripheral cannabinoid system may contribute to NGF-induced local myofascial sensitization of mechanoreceptors. Peripheral application of THC may counter this effect by activating the CB1 receptors on masseter muscle mechanoreceptors to provide analgesic relief without central side effects.
SIGNIFICANCE:
Our results suggest THC could reduce masticatory muscle pain through activating peripheral CB1 receptors. Peripheral application of cannabinoids could be a novel approach to provide analgesic relief without central side effects.”
https://www.ncbi.nlm.nih.gov/pubmed/28722246
http://onlinelibrary.wiley.com/doi/10.1002/ejp.1085/abstract
Amyloid proteotoxicity initiates an inflammatory response blocked by cannabinoids.
“The beta amyloid (Aβ) and other aggregating proteins in the brain increase with age and are frequently found within neurons. The mechanistic relationship between intracellular amyloid, aging and neurodegeneration is not, however, well understood.
We use a proteotoxicity model based upon the inducible expression of Aβ in a human central nervous system nerve cell line to characterize a distinct form of nerve cell death caused by intracellular Aβ. It is shown that intracellular Aβ initiates a toxic inflammatory response leading to the cell’s demise. Aβ induces the expression of multiple proinflammatory genes and an increase in both arachidonic acid and eicosanoids, including prostaglandins that are neuroprotective and leukotrienes that potentiate death.
Cannabinoids such as tetrahydrocannabinol stimulate the removal of intraneuronal Aβ, block the inflammatory response, and are protective.
Altogether these data show that there is a complex and likely autocatalytic inflammatory response within nerve cells caused by the accumulation of intracellular Aβ, and that this early form of proteotoxicity can be blocked by the activation of cannabinoid receptors.”
Sativex® effects on promoter methylation and on CNR1/CNR2 expression in peripheral blood mononuclear cells of progressive multiple sclerosis patients.
“Multiple sclerosis (MS) is a chronic demyelinating central nervous system (CNS) disease that involve oligodendrocyte loss and failure to remyelinate damaged brain areas causing a progressive neurological disability.
Studies in MS mouse model suggest that cannabinoids ameliorate symptoms as spasticity, tremor and pain reducing inflammation via cannabinoid-mediated system.
The aim of our study is to investigate the changes in cannabinoid type 1 (CNR1) and 2 (CNR2) receptors mRNA expression levels and promoter methylation in peripheral blood mononuclear cells (PBMCs) of MS secondary progressive (MSS-SP) patients treated with Sativex®.
These results suggest that the different expression of cannabinoid receptors by Sativex® treatment in leukocytes might be regulated through a molecular mechanism that involve interferon modulation.”
https://www.ncbi.nlm.nih.gov/pubmed/28716266
http://www.jns-journal.com/article/S0022-510X(17)30392-1/fulltext
A Conversion of Oral Cannabidiol to Delta9-Tetrahydrocannabinol Seems Not to Occur in Humans
“Cannabidiol (CBD), a major cannabinoid of hemp, does not bind to CB1 receptors and is therefore devoid of psychotomimetic properties. Under acidic conditions, CBD can be transformed to delta9-tetrahydrocannabinol (THC) and other cannabinoids. It has been argued that this may occur also after oral administration in humans. However, the experimental conversion of CBD to THC and delta8-THC in simulated gastric fluid (SGF) is a highly artificial approach that deviates significantly from physiological conditions in the stomach; therefore, SGF does not allow an extrapolation to in vivo conditions.
Unsurprisingly, the conversion of oral CBD to THC and its metabolites has not been observed to occur in vivo, even after high doses of oral CBD. In addition, the typical spectrum of side effects of THC, or of the very similar synthetic cannabinoid nabilone, as listed in the official Summary of Product Characteristics (e.g., dizziness, euphoria/high, thinking abnormal/concentration difficulties, nausea, tachycardia) has not been observed after treatment with CBD in double-blind, randomized, controlled clinical trials. In conclusion, the conversion of CBD to THC in SGF seems to be an in vitro artifact.
Over 40 years of research on CBD does not suggest a conversion of CBD to delta9-THC and/or other cannabinoids in vivo after oral administration. Such transformation occurs under artificial conditions, but is without any relevance for an oral therapy with CBD.” http://online.liebertpub.com/doi/full/10.1089/can.2017.0009?_ga=2.206725530.884504339.1500032065-2115951543.1500032065#
“Cannabidiol Does Not Convert to THC In Vivo. Although CBD Can Be Transformed to THC Under Acidic Conditions, the Conversion of Oral CBD Doesn’t Occur In Vivo” http://www.genengnews.com/gen-exclusives/cannabidiol-does-not-convert-to-thc-iin-vivoi/77900938