In vivo Evidence for Therapeutic Properties of Cannabidiol (CBD) for Alzheimer’s Disease.

Image result for Front Pharmacol.

“Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that is affecting an increasing number of people. It is characterized by the accumulation of amyloid-β and tau hyperphosphorylation as well as neuroinflammation and oxidative stress.

Current AD treatments do not stop or reverse the disease progression, highlighting the need for new, more effective therapeutics.

Cannabidiol (CBD) is a non-psychoactive phytocannabinoid that has demonstrated neuroprotective, anti-inflammatory and antioxidant properties in vitro. Thus, it is investigated as a potential multifunctional treatment option for AD.

Here, we summarize the current status quo of in vivo effects of CBD in established pharmacological and transgenic animal models for AD.

The studies demonstrate the ability of CBD to reduce reactive gliosis and the neuroinflammatory response as well as to promote neurogenesis.

Importantly, CBD also reverses and prevents the development of cognitive deficits in AD rodent models.

Interestingly, combination therapies of CBD and Δ9-tetrahydrocannabinol (THC), the main active ingredient of cannabis sativa, show that CBD can antagonize the psychoactive effects associated with THC and possibly mediate greater therapeutic benefits than either phytocannabinoid alone.

The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” https://www.ncbi.nlm.nih.gov/pubmed/28217094

“It is unlikely that any drug acting on a single pathway or target will mitigate the complex pathoetiological cascade leading to AD. Therefore, a multifunctional drug approach targeting a number of AD pathologies simultaneously will provide better, wider-ranging benefits than current therapeutic approaches. Importantly, the endocannabinoid system has recently gained attention in AD research as it is associated with regulating a variety of processes related to AD, including oxidative stress, glial cell activation and clearance of macromolecules. The phytocannabinoid cannabidiol (CBD) is a prime candidate for this new treatment strategy. CBD has been found in vitro to be neuroprotective, to prevent hippocampal and cortical neurodegeneration, to have anti-inflammatory and antioxidant properties, reduce tau hyperphosphorylation and to regulate microglial cell migration. Furthermore, CBD was shown to protect against Aβ mediated neurotoxicity and microglial-activated neurotoxicity, to reduce Aβ production by inducing APP ubiquination and to improve cell viability,. These properties suggest that CBD is perfectly placed to treat a number of pathologies typically found in AD. The studies provide “proof of principle” that CBD and possibly CBD-THC combinations are valid candidates for novel AD therapies.” http://journal.frontiersin.org/article/10.3389/fphar.2017.00020/full

Implication of cannabinoids in neurological diseases.

Image result for Cellular and Molecular Neurobiology

“1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson’s disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.” https://www.ncbi.nlm.nih.gov/pubmed/16699878

“Medical marijuana: emerging applications for the management of neurologic disorders.” https://www.ncbi.nlm.nih.gov/pubmed/15458761

Evaluation of cannabinoids concentration and stability in standardized preparations of cannabis tea and cannabis oil by ultra-high performance liquid chromatography tandem mass spectrometry.

Image result for Clin Chem Lab Med.

“Cannabis has been used since ancient times to relieve neuropathic pain, to lower intraocular pressure, to increase appetite and finally to decrease nausea and vomiting.

The combination of the psychoactive cannabis alkaloid Δ9-tetrahydrocannabinol (THC) with the non-psychotropic alkaloids cannabidiol (CBD) and cannabinol (CBN) demonstrated a higher activity than THC alone.

Extraction efficiency of oil was significantly higher than that of water with respect to the different cannabinoids.

Fifteen minutes boiling was sufficient to achieve the highest concentrations of cannabinoids in the cannabis tea solutions.

As the first and most important aim of the different cannabis preparations is to guarantee therapeutic continuity in treated individuals, a strictly standardized preparation protocol is necessary to assure the availability of a homogeneous product of defined stability.”

https://www.ncbi.nlm.nih.gov/pubmed/28207408

Cannabis cultivation: Methodological issues for obtaining medical-grade product.

Image result for epilepsy & behavior

“As studies continue to reveal favorable findings for the use of cannabidiol in the management of childhood epilepsy syndromes and other disorders, best practices for the large-scale production of Cannabis are needed for timely product development and research purposes. The processes of two institutions with extensive experience in producing large-scale cannabidiol chemotype Cannabis crops-GW Pharmaceuticals and the University of Mississippi-are described, including breeding, indoor and outdoor growing, harvesting, and extraction methods. Such practices have yielded desirable outcomes in Cannabis breeding and production: GW Pharmaceuticals has a collection of chemotypes dominant in any one of eight cannabinoids, two of which-cannabidiol and cannabidivarin-are supporting epilepsy clinical trial research, whereas in addition to a germplasm bank of high-THC, high-CBD, and intermediate type cannabis varieties, the team at University of Mississippi has established an in vitro propagation protocol for cannabis with no detectable variations in morphologic, physiologic, biochemical, and genetic profiles as compared to the mother plants. Improvements in phytocannabinoid yields and growing efficiency are expected as research continues at these institutions.”

https://www.ncbi.nlm.nih.gov/pubmed/28202406

Adolescent exposure to chronic delta-9-tetrahydrocannabinol blocks opiate dependence in maternally deprived rats.

Image result for Neuropsychopharmacology

“Maternal deprivation in rats specifically leads to a vulnerability to opiate dependence. However, the impact of cannabis exposure during adolescence on this opiate vulnerability has not been investigated.

Chronic dronabinol (natural delta-9 tetrahydrocannabinol, THC) exposure during postnatal days 35-49 was made in maternal deprived (D) or non-deprived rats.

These findings point to the self-medication use of cannabis in subgroups of individuals subjected to adverse postnatal environment.”

https://www.ncbi.nlm.nih.gov/pubmed/19553915

“The surprising effect of cannabis on morphine dependence. Injections of THC, the active principle of cannabis, eliminate dependence on opiates (morphine, heroin) in rats deprived of their mothers at birth.” https://medicalxpress.com/news/2009-07-effect-cannabis-morphine.html

“THC HELPS LAB RATS KICK THE MORPHINE HABIT”  http://hightimes.com/medicinal/thc-helps-lab-rats-kick-the-morphine-habit/

Effects on Spasticity and Neuropathic Pain of an Oral Formulation of Δ9-Tetrahydrocannabinol in Patients With Progressive Multiple Sclerosis

Image result for Clinical Therapeutics

“The aim of the present study was to evaluate the efficacy of an oral formulation of Δ9-tetrahydrocannabinol (ECP002A) in patients with progressive multiple sclerosis (MS).

Pain was significantly reduced when measured directly after administration of ECP002A in the clinic but not when measured in a daily diary. A similar pattern was observed in subjective muscle spasticity. Other clinical outcomes were not significantly different between active treatment and placebo. Cognitive testing indicated that there was no decline in cognition after 2 or 4 weeks of treatment attributable to ECP002A compared with placebo.

Implications This study specifically underlines the added value of thorough investigation of pharmacokinetic and pharmacodynamic associations in the target population. Despite the complex interplay of psychoactive effects and analgesia, the current oral formulation of Δ9-tetrahydrocannabinol may play a role in the treatment of spasticity and pain associated with MS because it was well tolerated and had a stable pharmacokinetic profile.”

https://www.ncbi.nlm.nih.gov/pubmed/28189366

Cannabinoids in treatment-resistant epilepsy: A review.

Image result for Epilepsy Behav

“Treatment-resistant epilepsy (TRE) affects 30% of epilepsy patients and is associated with severe morbidity and increased mortality.

Cannabis-based therapies have been used to treat epilepsy for millennia, but only in the last few years have we begun to collect data from adequately powered placebo-controlled, randomized trials (RCTs) with cannabidiol (CBD), a cannabis derivative.

Previously, information was limited to case reports, small series, and surveys reporting on the use of CBD and diverse medical marijuana (MMJ) preparations containing: tetrahydrocannabinol (THC), CBD, and many other cannabinoids in differing combinations.

These RCTs have studied the safety and explored the potential efficacy of CBD use in children with Dravet Syndrome (DS) and Lennox-Gastaut Syndrome (LGS).

The role of the placebo response is of paramount importance in studying medical cannabis products given the intense social and traditional media attention, as well as the strong beliefs held by many parents and patients that a natural product is safer and more effective than FDA-approved pharmaceutical agents.

We lack valid data on the safety, efficacy, and dosing of artisanal preparations available from dispensaries in the 25 states and District of Columbia with MMJ programs and online sources of CBD and other cannabinoids. On the other hand, open-label studies with 100mg/ml CBD (Epidiolex®, GW Pharmaceuticals) have provided additional evidence of its efficacy along with an adequate safety profile (including certain drug interactions) in children and young adults with a spectrum of TREs.

Further, Phase 3 RCTs with Epidiolex support efficacy and adequate safety profiles for children with DS and LGS at doses of 10- and 20-mg/kg/day. This article is part of a Special Issue titled “Cannabinoids and Epilepsy”.”

https://www.ncbi.nlm.nih.gov/pubmed/28188044

Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance.

Image result for Handb Exp Pharmacol.

“Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands’ synthesizing/degrading enzymes.

The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury.

For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects.

New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.”

https://www.ncbi.nlm.nih.gov/pubmed/28161834

Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.

Image result for comprehensive physiology

“The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system.

A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity.

The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain.

We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress.

We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists.

We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine.

We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol.

These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized.”

https://www.ncbi.nlm.nih.gov/pubmed/28134998

Topical application of THC containing products is not able to cause positive cannabinoid finding in blood or urine.

Image result for University of Bonn logo

“A male driver was checked during a traffic stop.

A blood sample was collected 35min later and contained 7.3ng/mL THC, 3.5ng/mL 11-hydroxy-THC and 44.6ng/mL 11-nor-9-carboxy-THC. The subject claimed to have used two commercially produced products topically that contained 1.7ng and 102ng THC per mg, respectively. In an experiment, three volunteers (25, 26 and 34 years) applied both types of salves over a period of 3days every 2-4h. The application was extensive (50-100cm2). Each volunteer applied the products to different parts of the body (neck, arm/leg and trunk, respectively). After the first application blood and urine samples of the participants were taken every 2-4h until 15h after the last application (overall n=10 urine and n=10 blood samples, respectively, for each participant).

All of these blood and urine samples were tested negative for THC, 11-hydroxy-THC and 11-nor-9-carboxy-THC by a GC-MS method (LoD (THC)=0.40ng/mL; LoD (11-hydroxy-THC)=0.28ng/mL; LoD (THC-COOH)=1.6ng/mL;. LoD (THC-COOH in urine)=1.2ng/mL).

According to our studies and further literature research on in vitro testing of transdermal uptake of THC, the exclusive application of (these two) topically applied products did not produce cannabinoid findings in blood or urine.”

https://www.ncbi.nlm.nih.gov/pubmed/28122323