Cannabidiol and Sports Performance: A Narrative Review of Relevant Evidence and Recommendations for Future Research

Sports Medicine - Open Cover Image “Cannabidiol (CBD) is a non-intoxicating cannabinoid derived from Cannabis sativa. CBD initially drew scientific interest due to its anticonvulsant properties but increasing evidence of other therapeutic effects has attracted the attention of additional clinical and non-clinical populations, including athletes.

Unlike the intoxicating cannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC), CBD is no longer prohibited by the World Anti-Doping Agency and appears to be safe and well-tolerated in humans. It has also become readily available in many countries with the introduction of over-the-counter “nutraceutical” products.

The aim of this narrative review was to explore various physiological and psychological effects of CBD that may be relevant to the sport and/or exercise context and to identify key areas for future research. As direct studies of CBD and sports performance are is currently lacking, evidence for this narrative review was sourced from preclinical studies and a limited number of clinical trials in non-athlete populations.

Preclinical studies have observed robust anti-inflammatory, neuroprotective and analgesic effects of CBD in animal models. Preliminary preclinical evidence also suggests that CBD may protect against gastrointestinal damage associated with inflammation and promote healing of traumatic skeletal injuries. However, further research is required to confirm these observations.

Early stage clinical studies suggest that CBD may be anxiolytic in “stress-inducing” situations and in individuals with anxiety disorders. While some case reports indicate that CBD improves sleep, robust evidence is currently lacking. Cognitive function and thermoregulation appear to be unaffected by CBD while effects on food intake, metabolic function, cardiovascular function, and infection require further study.

CBD may exert a number of physiological, biochemical, and psychological effects with the potential to benefit athletes. However, well controlled, studies in athlete populations are required before definitive conclusions can be reached regarding the utility of CBD in supporting athletic performance.”

https://pubmed.ncbi.nlm.nih.gov/32632671/

“CBD has been reported to exert a number of physiological, biochemical, and psychological effects that have the potential to benefit athletes. For instance, there is preliminary supportive evidence for anti-inflammatory, neuroprotective, analgesic, and anxiolytic actions of CBD and the possibility it may protect against GI damage associated with inflammation and promote the healing of traumatic skeletal injuries.”

https://sportsmedicine-open.springeropen.com/articles/10.1186/s40798-020-00251-0

The Expression Level of Cannabinoid Receptors Type 1 and 2 in the Different Types of Astrocytomas

 SpringerLink“Astrocytomas, the most prevalent primary brain tumors, can be divided by histology and malignancy levels into four following types: pilocytic astrocytoma (grade I), diffuse fibrillary astrocytoma (grade II), anaplastic astrocytoma (grade III), and glioblastoma multiforme (grade IV). For high grade astrocytomas (grade III and grade IV), blood vessels formation is considered as the most important property.

The distribution of cannabinoid receptors type 1 (CB1) and cannabinoid receptor type 2 (CB2) in blood vessels and tumor tissue of astrocytoma is still controversial. Asrocytoma tissues were collected from 45 patients under the condition of tumor-related neurosurgical operation. The expression of CB1 and CB2 receptors was assessed using immunofluorescence, quantitative real-time RT-PCR and western blotting.

The results indicated an increased expression of CB1 receptors in tumor tissue. There was a significant difference in the mount of CB2 receptors in blood vessels. More was observed in the grade III and glioblastoma (grade IV) than astrocytoma of grade II and control.

This study suggested that, the expression increase of cannabinoid receptors is an index for astrocytoma malignancy and can be targeted as a therapeutic approach for the inhibition of astrocytoma growth among patients.”

https://pubmed.ncbi.nlm.nih.gov/32623617/

https://link.springer.com/article/10.1007%2Fs11033-020-05636-8

Administration of Δ9-Tetrahydrocannabinol (THC) Post-Staphylococcal Enterotoxin B Exposure Protects Mice From Acute Respiratory Distress Syndrome and Toxicity

Frontiers in Pharmacology welcomes new Field Chief Editor ...“Acute Respiratory Distress Syndrome (ARDS) is a life-threatening complication that can ensue following Staphylococcus aureus infection. The enterotoxin produced by these bacteria (SEB) acts as a superantigen thereby activating a large proportion of T cells leading to cytokine storm and severe lung injury.

Δ9Tetrahydrocannabinol (THC), a psychoactive ingredient found in Cannabis sativa, has been shown to act as a potent anti-inflammatory agent. In the current study, we investigated the effect of THC treatment on SEB-induced ARDS in mice.

While exposure to SEB resulted in acute mortality, treatment with THC led to 100% survival of mice. THC treatment significantly suppressed the inflammatory cytokines, IFN-γ and TNF-α. Additionally, THC elevated the induction of regulatory T cells (Tregs) and their associated cytokines, IL-10 and TGF-β. Moreover, THC caused induction of Myeloid-Derived Suppressor Cells (MDSCs).

THC acted through CB2 receptor as pharmacological inhibitor of CB2 receptors blocked the anti-inflammatory effects. THC-treated mice showed significant alterations in the expression of miRNA (miRs) in the lung-infiltrated mononuclear cells (MNCs). Specifically, THC caused downregulation of let7a-5p which targeted SOCS1 and downregulation of miR-34-5p which caused increased expression of FoxP3, NOS1, and CSF1R.

Together, these data suggested that THC-mediated alterations in miR expression in the lungs may play a critical role in the induction of immunosuppressive Tregs and MDSCs as well as suppression of cytokine storm leading to attenuation of SEB-mediated lung injury.”

https://pubmed.ncbi.nlm.nih.gov/32612530/

“In summary, the current study suggests that treatment of mice with THC post-SEB challenge protects mice from SEB-mediated toxicity by inhibiting inflammation and ARDS through the modulation of miRs. Because SEB is a super antigen that drives cytokine storm, our studies suggest that THC is a potent anti-inflammatory agent that has the potential to be used as a therapeutic modality to treat SEB-induced ARDS.

It is of interest to note that a significant proportion of Coronavirus disease 2019 (COVID-19) patients come down with sepsis and ARDS accompanied by cytokine storm. ”

https://www.frontiersin.org/articles/10.3389/fphar.2020.00893/full

The pharmacokinetics, efficacy, and safety of a novel selective‐dose cannabis inhaler in patients with chronic pain: A randomized, double‐blinded, placebo‐controlled trial

European Journal of Pain“Precise cannabis treatment dosing remains a major challenge, leading to physicians’ reluctance to prescribe medical cannabis.

Objective

To test the pharmacokinetics, analgesic effect, cognitive performance and safety effects of an innovative medical device that enables the delivery of inhaled therapeutic doses of Δ9‐Tetrahydrocannabinol (THC) in patients with chronic pain.

Methods

In a randomized, three‐arms, double‐blinded, placebo‐controlled, cross‐over trial, 27 patients received a single inhalation of Δ9‐THC: 0.5mg, 1mg, or a placebo.

Δ9‐THC plasma levels were measured at baseline and up to 150‐min post‐inhalation. Pain intensity and safety parameters were recorded on a 10‐cm visual analogue scale (VAS) at pre‐defined time points. The cognitive performance was evaluated using the selective sub‐tests of the Cambridge Neuropsychological Test Automated Battery (CANTAB).

Results

Following inhalation of 0.5 mg or 1mg, Δ9‐THC plasma max ± SD were 14.3 ± 7.7 and 33.8 ± 25.7 ng/ml. max ± SD were 3.7 ± 1.4 and 4.4 ± 2.1 min, and AUC0 → infinity±SD were 300 ± 144 and 769 ± 331 ng*min/ml, respectively. Both doses, but not the placebo, demonstrated a significant reduction in pain intensity compared with baseline and remained stable for 150‐min. The 1‐mg dose showed a significant pain decrease compared to the placebo. Adverse events were mostly mild and resolved spontaneously. There was no evidence of consistent impairments in cognitive performance.

Conclusion

This feasibility trial demonstrated that a metered‐dose cannabis inhaler delivered precise and low THC doses, produced a dose‐dependent and safe analgesic effect in patients with neuropathic pain/ complex‐regional pain syndrome (CRPS). Thus, it enables individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically by accepted pharmaceutical models.

Significance

Evidence suggests that cannabis‐based medicines are an effective treatment for chronic pain in adults. The pharmacokinetics of THC varies as a function of its route of administration. Pulmonary assimilation of inhaled THC causes rapid onset of analgesia. However, currently used routes of cannabinoids delivery provide unknown doses, making it impossible to implement a pharmaceutical standard treatment plan. A novel selective‐dose cannabis inhaler delivers significantly low and precise doses of THC, thus allowing the administration of inhaled cannabis‐based medicines according to high pharmaceutical standards. These low doses of THC can produce safe and effective analgesia in patients with chronic pain.

To the best of our knowledge, it is the first time that the delivery of selective, significantly low, and precise therapeutic single doses of inhaled THC demonstrates an analgesic effect. It allows patients to reach the optimum balance between symptom relief and controlled side effects, enabling patients to regain their quality of life. In addition, this metered‐dose cannabis inhaler enables the individualization of medical cannabis regimens that can be evaluated pharmacokinetically and pharmacodynamically using accepted pharmaceutical models.”

https://onlinelibrary.wiley.com/doi/10.1002/ejp.1605

Study Finds Microdosing THC Reduces Pain Levels”  https://www.painnewsnetwork.org/stories/2020/7/1/study-finds-microdosing-thc-reduces-pain-levels

Pharmacological Analysis of Cannabis Sativa: A Potent Herbal Plant

“Genus Cannabis belong to family Cannabaceae and is traditionally used as medicinal plant against many diseases notably asthma, malaria, treatment of skin diseases, diabetes and headache. The plant Cannabis sativa L. is flowering and an annual herbaceous plant located to eastern Asia but now of cosmopolitan distribution due to extensive cultivation.

Aim of the study: The aim of review is to provide a complete evaluation of the botanical, ethnological and chemical aspects of Cannabis sativa L., and its importance in pharmacological studies.

Results and discussions: This article briefly reviews the botany, traditional knowledge, pharmacological and therapeutic application of the plant C. sativa. This is an attempt to compile and document information about the chemical constituent, pharmacological and therapeutic effects of C. sativa as important herbal drug due to its safety and effectiveness. Studies have revealed its use as anti-bacterial, anti-fungal, anti-cancer, anti-inflammatory and improving testicular function in rats. Consumption of C. sativa is greater in all over the world among all other drugs of abuse in its various forms such as marijuana, hashish and cannabis oil. The study of herbal medicine spans the knowledge of biology, history, source, physical and chemical nature, and mechanism of action, traditional, medicinal and therapeutic use of drug. This article also provide knowledge about macroscopically and microscopically characters of Cannabis sativa with geographical sources. The wellknown cannabinoids are Tetrahydrocannabinol (THC), Cannabidiol (CBD) and Cannabichromene (CBC) and their pharmacological properties and importance have been extensively studied. Hence, efforts are required to establish and validate evidence regarding safety and practices of Ayurveda medicines.

Conclusion: Thes studies will help in expanding the current therapeutic potential of C. sativa and it also provide a strong support to its future clinical use as herbal medicines having safe in use with no side effects.”

https://pubmed.ncbi.nlm.nih.gov/32600228/

https://www.eurekaselect.com/183226/article

Use of Cannabis for Agitation in Patients With Dementia

 logo“Studies have reported changes in the endocannabinoid system in the brain of patients with Alzheimer’s disease (AD), playing a role in the pathophysiology of AD. Cannabinoids have been shown to have neuroprotective properties, reduce neuroinflammation, and enhance neurogenesis. Evidence suggests that the utilization of marijuana products containing both tetrahydrocannabinol (THC) and cannabidiol (CBD) or CBD alone have been effective and safe for use in older people with agitation associated with dementia.

A review in 2017 summarized positive findings for therapeutic benefits of cannabinoids in agitation of AD and dementia, but there was no definitive conclusion because of varying cannabinoid products. Cannabinoids were shown to be well tolerated, with few short-term side effects. This differs from first-line medications utilized for dementia behaviors, which can have unwanted side effects. Further research regarding the safety, efficacy, and variability of these products in older people is needed.”

https://pubmed.ncbi.nlm.nih.gov/32600509/

https://www.ingentaconnect.com/content/ascp/tscp/2020/00000035/00000007/art00006;jsessionid=1ivcuvrvy4g1s.x-ic-live-03

Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates

Journal of Pharmacology and Experimental Therapeutics“Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge.

Although cannabinergic medications have been used in certain treatment-resistant populations, FDA-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications.

The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg), against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys.

These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggests that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side-effect liability.

SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved anti-emetic pharmacotherapies has been impeded by a paucity of animal models.

The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid-analog methanandamide in nonhuman primates.”

https://pubmed.ncbi.nlm.nih.gov/32561684/

http://jpet.aspetjournals.org/content/early/2020/06/19/jpet.120.265710

Targeting the Endocannabinoid System: A Predictive, Preventive, and Personalized Medicine-Directed Approach to the Management of Brain Pathologies

 SpringerLink“Cannabis-inspired medical products are garnering increasing attention from the scientific community, general public, and health policy makers. A plethora of scientific literature demonstrates intricate engagement of the endocannabinoid system with human immunology, psychology, developmental processes, neuronal plasticity, signal transduction, and metabolic regulation. Despite the therapeutic potential, the adverse psychoactive effects and historical stigma, cannabinoids have limited widespread clinical application. Therefore, it is plausible to weigh carefully the beneficial effects of cannabinoids against the potential adverse impacts for every individual. This is where the concept of “personalized medicine” as a promising approach for disease prediction and prevention may take into the account. The goal of this review is to provide an outline of the endocannabinoid system, including endocannabinoid metabolizing pathways, and will progress to a more in-depth discussion of the therapeutic interventions by endocannabinoids in various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32549916/

https://link.springer.com/article/10.1007%2Fs13167-020-00203-4

Cannabidiol Anticonvulsant Effect Is Mediated by the PI3Kγ Pathway

Neuropharmacology“The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt)/mechanistic target of rapamycin (mTOR) signaling pathway has been associated with several pathologies in the central nervous system (CNS), including epilepsy. There is evidence supporting the hypothesis that the PI3Kγ signaling pathway may mediate the powerful anticonvulsant properties associated with the cannabinoidergic system.

This work aims to investigate if the anticonvulsant and neuroprotective effects of cannabidiol (CBD) are mediated by PI3Kγ.

CDB increased latency and reduced the severity of pilocarpine-induced behavioral seizures, as well as prevented postictal changes, such as neurodegeneration, microgliosis and astrocytosis, in WT animals, but not in PI3Kγ-/-. CBD in vivo effects were abolished by pharmacological inhibition of cannabinoid receptor or mTOR. In vitro, PI3Kγ inhibition or deficiency also changed CBD protection observed in glutamate-induced cell death assay. Thus, we suggest that the modulation of PI3K/mTOR signaling pathway is involved in the anticonvulsant and neuroprotective effects of CBD.

These findings are important not only for the elucidation of the mechanisms of action of CBD, which are currently poorly understood, but also to allow the prediction of therapeutic and side effects, ensuring efficacy and safety in the treatment of patients with epilepsy.”

https://pubmed.ncbi.nlm.nih.gov/32574650/

“CBD is anticonvulsant in a model of pilocarpine-induced behavioral seizures. CB1 receptor mediates the effects of CBD. PI3Kγ pathway mediates the anticonvulsant neuroprotective effects of CBD.”

https://www.sciencedirect.com/science/article/abs/pii/S0028390820302240?via%3Dihub

Current Application of Cannabidiol (CBD) in the Management and Treatment of Neurological Disorders

SpringerLink“Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32556748/

https://link.springer.com/article/10.1007%2Fs10072-020-04514-2