Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment.

Life Sciences

“The pharmacological research on the Cannabis sativa-derived compounds has never terminated. Among the phytocannabinoids without psychotropic effects, the prevalent one in Cannabis is cannabidiol (CBD). Although CBD was initially considered a type 2 cannabinoid receptor (CB2R) antagonist, it did not show a good cannabinoidergic activity. Furthermore, heterogeneous results were obtained in experimental animal models of anxiety disorders, psychotic stages and neurodegenerative diseases. Recently, CBD has been authorized by the FDA to treat some rare forms of epilepsy and many trials have begun for the treatment of autism spectrum disorders. This review aims to clarify the pharmacological activity of CBD and its multiple therapeutic applications. Furthermore, critical and conflicting results of the research on CBD are discussed with a focus on promising future prospects.”

https://www.ncbi.nlm.nih.gov/pubmed/30910646

https://www.sciencedirect.com/science/article/abs/pii/S0024320519302176?via%3Dihub

In-silico designing and characterization of binding modes of two novel inhibitors for CB1 receptor against obesity by classical 3D-QSAR approach.

Journal of Molecular Graphics and Modelling

“Obesity is the fifth primary hazard for mortality in the world; hence different therapeutic targets are explored to overcome this problem.

Endocannabinoid is identified as the emerging target for the treatment of obesity as Cannabinoid 1 (CB1) receptor over-activation resulted in abdominal obesity.

Potent antagonists or inverse agonists for CB1 receptor are the new strategies to develop anti-obesity drugs.

The obtained results signify the potential of the developed model; suggesting that the models can be useful to test and design potent novel CB1 receptor antagonists or inverse agonists prior to the synthesis.”

https://www.ncbi.nlm.nih.gov/pubmed/30908997

“Potent antagonists or inverse agonists for CB1 receptor are the new strategies to develop anti-obesity drugs.”

https://www.sciencedirect.com/science/article/pii/S1093326318308398?via%3Dihub

GPR55 – a putative “type 3” cannabinoid receptor in inflammation.

“G protein-coupled receptor 55 (GPR55) shares numerous cannabinoid ligands with CB1 and CB2 receptors despite low homology with those classical cannabinoid receptors. The pharmacology of GPR55 is not yet fully elucidated; however, GPR55 utilizes a different signaling system and downstream cascade associated with the receptor. Therefore, GPR55 has emerged as a putative “type 3″ cannabinoid receptor, establishing a novel class of cannabinoid receptor. Furthermore, the recent evidence of GPR55-CB1 and GPR55-CB2 heteromerization along with its broad distribution from central nervous system to peripheries suggests the importance of GPR55 in various cellular processes and pathologies and as a potential therapeutic target in inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/26669245

https://www.degruyter.com/view/j/jbcpp.2016.27.issue-3/jbcpp-2015-0080/jbcpp-2015-0080.xml

The endocannabinoid system in migraine: from bench to pharmacy and back.

 Image result for curr opin neurol“Migraine is a common, highly disabling disorder. Its treatment involves acute and preventive therapy. Many of available preventive medications are not well tolerated, which results in poor compliance and limited effectiveness. Cannabinoids have been proposed for the treatment of migraine but their efficacy and tolerability are controversial.

RECENT FINDINGS:

Cannabinoids modulate functions and activity of signaling pathways that have a key role in pain control. Growing preclinical evidence and initial clinical findings suggest that modulation of the endocannabinoid system, via endogenous or exogenous cannabinoids may be relevant for migraine via multiple mechanisms.

SUMMARY:

The endocannabinoid system qualifies as an interesting area of research worth exploration in the quest for therapeutic targets for the treatment of migraine.”

https://www.ncbi.nlm.nih.gov/pubmed/30883435

Cannabimimetic plants: are they new cannabinoidergic modulators?

“Phytochemicals and secondary metabolites able to interact with the endocannabinoid system (Cannabimimetics) have been recently described in a broad range of plants and fruits. These findings can open new alternative avenues to explore for the development of novel therapeutic compounds. The cannabinoids regulate many physiological and pathological functions in both animals and plants. Cannabis sativa is the main plant that produces phytocannabinoids inside resins capable to defend the plant from the aggression of parasites and herbivores. Animals produce anandamide and 2-arachidonoyl glycerol, which thanks to binding with main receptors such as type-1 cannabinoid receptor (CB1R) and the type-2 cannabinoid receptor (CB2R) are involved in inflammation processes and several brain functions. Endogenous cannabinoids, enzymes for synthesis and degradation of cannabinoids, and CB1R and CB2R constitute the endocannabinoid system (ECS). Other plants can produce cannabinoid-like molecules such as perrottetinene extracted from Radula perrottetii, or anandamide and 2-arachidonoyl glycerol extracted from some bryophytes. Moreover, several other secondary metabolites can also interact with the ECS of animals and take the name of cannabimimetics. These phytoextracts not derived from Cannabis sativa can act as receptor agonists or antagonist, or enzyme inhibitors of ECS and can be involved in the inflammation, oxidative stress, cancer, and neuroprotection. Finally, given the evolutionary heterogeneity of the cannabimimetic plants, some authors speculated on the fascinating thesis of the evolutionary convergence between plants and animals regarding biological functions of ECS. The review aims to provide a critical and complete assessment of the botanical, chemical and therapeutic aspects of cannabimimetic plants to evaluate their spread in the world and medicinal potentiality.”

https://www.ncbi.nlm.nih.gov/pubmed/30877436

https://link.springer.com/article/10.1007%2Fs00425-019-03138-x

β-Caryophyllene, a Natural Sesquiterpene, Attenuates Neuropathic Pain and Depressive-Like Behavior in Experimental Diabetic Mice.

 View details for Journal of Medicinal Food cover image“Neuropathic pain (NP) is associated with chronic hyperglycemia and emotional disorders such as depression in diabetic patients, complicating the course of treatment. Drugs currently used to treat NP have undesirable side effects, so research on other natural sources has been required.

β-caryophyllene (BCP), a natural sesquiterpene found in some food condiments and considered an agonist to cannabinoid receptor type 2, could have potential therapeutic effects to treat conditions such as NP and emotional disorders. For this reason, we assessed whether BCP modulates nociception, anxiety, and depressive-like behavior in streptozotocin (STZ)-induced experimental diabetic BALB/c female mice.

BCP was orally chronic administrated (10 mg/kg/60 μL). Pain developed with STZ was evaluated with von Frey filament test, SMALGO®, and hot plate test. Anxiety and depression-like behavior were assessed by marbles test, forced swim test, and tail suspension test. BCP significantly reduced glycemia in experimental diabetic mice. The pain was also mitigated by BCP administration. Depression-like behavior assessed with tail suspension test was attenuated with orally chronic BCP administration. Substance P and cytokines such as interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) were also attenuated with BCP administration. NP was positively correlated with substance P and IL-6 and IL-1β release.

Our data using an orally chronic BCP administration in the STZ challenged mice to suggest that glycemia, diabetes-related NP, and depressive-like behavior could be prevented/reduced by dietary BCP.”

https://www.ncbi.nlm.nih.gov/pubmed/30864870

https://www.liebertpub.com/doi/10.1089/jmf.2018.0157

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Perspectives on the Role of Endocannabinoids in Autism Spectrum Disorders.

 Logo of nihpa

“Autism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis. At present, there is an ever-growing list of mutations in putative susceptibility genes in affected individuals, preventing effective transformation of knowledge gathered from basic science research to the clinic. In response, the focus of ASD biology has shifted toward the identification of cellular signaling pathways that are common to various ASD-related mutations in hopes that these shared pathways may serve as more promising treatment targets than targeting individual genes or proteins. To this end, the endogenous cannabinoid (endocannabinoid, eCB) system has recently emerged as a promising therapeutic target in the field of ASD research. The eCB system is altered in several neurological disorders, but the role of these bioactive lipids in ASD etiology remains poorly understood. In this perspective, we review current evidence linking eCB signaling to ASDs and put forth the notion that continued focus on eCBs in autism research may provide valuable insight into pathophysiology and treatment strategies. In addition to its role in modulating transmitter release at mature synapses, the eCB signaling system plays important roles in many aspects of cortical development, and disruption of these effects of eCBs may also be related to ASD pathophysiology.”

https://www.ncbi.nlm.nih.gov/pubmed/30854511

“Advances in our understanding of eCB actions will undoubtedly facilitate pharmacological interventions and further, provide patients the best quality of life possible.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6407886/

Promoting cannabis products to pharmaceutical drugs.

European Journal of Pharmaceutical Sciences

“Cannabis sativa is widely used for medical purposes. However, to date, aroma, popular strain name or the content of two phytocannabinoids-Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are mostly considered for therapeutic activity. This is despite the hundreds of compounds in this plant and their potential synergistic interactions in mixtures. New, specific and effective cannabis-based drugs must be developed to achieve adequate medical standards for the use of cannabis. To do this, the comprehensive molecular profile of cannabis-based drugs must be defined, and mixtures of compounds should be tested for superior therapeutic activity due to synergistic effects compared to individually isolated cannabis compounds. The biological pathways targeted by these new drugs should also be characterized more accurately. For drug development and design, absorption, distribution, metabolism and elimination versus toxicity (ADME/Tox) must be characterized, and therapeutic doses identified. Promoting the quality and therapeutic activity of herbal or synthetic cannabis products to pharma grade is a pressing need worldwide.”

https://www.ncbi.nlm.nih.gov/pubmed/30851400

https://www.sciencedirect.com/science/article/pii/S0928098719300880?via%3Dihub

Cannabinoid Signaling in the Skin: Therapeutic Potential of the “C(ut)annabinoid” System.

molecules-logo

“The endocannabinoid system (ECS) has lately been proven to be an important, multifaceted homeostatic regulator, which influences a wide-variety of physiological processes all over the body. Its members, the endocannabinoids (eCBs; e.g., anandamide), the eCB-responsive receptors (e.g., CB₁, CB₂), as well as the complex enzyme and transporter apparatus involved in the metabolism of the ligands were shown to be expressed in several tissues, including the skin. Although the best studied functions over the ECS are related to the central nervous system and to immune processes, experimental efforts over the last two decades have unambiguously confirmed that cutaneous cannabinoid (“c[ut]annabinoid”) signaling is deeply involved in the maintenance of skin homeostasis, barrier formation and regeneration, and its dysregulation was implicated to contribute to several highly prevalent diseases and disorders, e.g., atopic dermatitis, psoriasis, scleroderma, acne, hair growth and pigmentation disorders, keratin diseases, various tumors, and itch. The current review aims to give an overview of the available skin-relevant endo- and phytocannabinoid literature with a special emphasis on the putative translational potential, and to highlight promising future research directions as well as existing challenges.”

https://www.ncbi.nlm.nih.gov/pubmed/30845666

https://www.mdpi.com/1420-3049/24/5/918

Novel protective effect of O-1602 and abnormal cannabidiol, GPR55 agonists, on ER stress-induced apoptosis in pancreatic β-cells.

Biomedicine & Pharmacotherapy

“Insulin resistance and β-cell dysfunction are the main defects in Type 2 Diabetes Mellitus (T2DM), and β-cell dysfunction and apoptosis is the critical determinant in the progression of T2DM. G-protein coupled receptor 55 (GPR55) is an orphan G-protein coupled receptor, which is activated by endocannabinoids and lipid transmitters. Recently, GPR55 was shown to regulate glucose and energy homeostasis, however its role in β-cell apoptosis was not studied. Therefore, in this study, we investigated the novel effect of GPR55 agonists, O-1602 and abnormal cannabidiol (Abn-CBD), on endoplasmic reticulum (ER) stress-induced apoptosis in mouse pancreatic β-cell lines, MIN6 and Beta-TC-6, and its underlying mechanisms. Our results showed that O-1602 and Abn-CBD reduced ER stress-induced apoptosis in MIN6 and Beta-TC-6 cells. This was through the phosphorylation of 3′-5′-cyclic adenosine monophosphate response element-binding protein (CREB) in β-cells, hence activating CREB downstream anti-apoptotic genes, Bcl-2 and Bcl-xL. Moreover, O-1602 and Abn-CBD directly activated kinases, CaMKIV, Erk1/2 and PKA, to induce CREB phosphorylation. Therefore, our results indicated that GPR55 agonists protected from β-cell apoptosis through CREB activation, thus up-regulating anti-apoptotic genes. In conclusion, our study provided a novel protective effect of GPR55 agonists on ER stress-induced apoptosis in β-cells and its underlying mechanisms mediating this protection, therefore we suggested that GPR55 might be a therapeutic target for T2DM.”

https://www.ncbi.nlm.nih.gov/pubmed/30841431

https://www.sciencedirect.com/science/article/pii/S0753332218375668?via%3Dihub