miR-23b-3p and miR-130a-5p affect cell growth, migration and invasion by targeting CB1R via the Wnt/β-catenin signaling pathway in gastric carcinoma.

Image result for dovepress

“Gastric cancer (GC) is the most common malignancy and third leading cause of cancer mortality worldwide. The identification of a sensitive biomarker as well as effective therapeutic targets for the treatment of GC is of critical importance. microRNAs play significant roles in the development of cancer and may serve as promising therapeutic targets.

RESULTS:

In the present study, it was demonstrated that the cannabinoid receptor 1 (CB1R) was overexpressed, and miR-23b-3p and miR-130a-5p were downregulated, in GC cells. In addition, the results revealed that these effects are associated with malignant biological behaviors exhibited by GC cells. Furthermore, miR-23b-3p and miR-130a-5p may regulate CB1R expression via the Wnt/β-catenin signaling pathway.

CONCLUSION:

Our results suggested dysregulation of CB1R expression is closely related to the malignant biological behavior of gastric cancer cells. miRNA/CB1R-based therapy may represent a promising therapeutic strategy for the clinical treatment of GC patients.”

https://www.ncbi.nlm.nih.gov/pubmed/30498363

https://www.dovepress.com/mir-23b-3p-and-mir-130a-5p-affect-cell-growth-migration-and-invasion-b-peer-reviewed-article-OTT

The Role of CB2 Receptor in the Recovery of Mice after Traumatic Brain Injury.

 Journal of Neurotrauma cover image“Cannabis is one of the most widely used plant drugs in the world today. In spite of the large number of scientific reports on medical marijuana there still exists much controversy surrounding its use and the potential for abuse due to the undesirable psychotropic effects. However, recent developments in medicinal chemistry of novel non-psychoactive synthetic cannabinoids have indicated that it is possible to separate some of the therapeutic effects from the psychoactivity. We have previously shown that treatment with the endocannabinoid 2-AG that binds to both CB1 and CB2 receptors 1 hr after traumatic brain injury in mice attenuates neurological deficits, edema formation, infarct volume, blood-brain barrier permeability, neuronal cell loss at the CA3 hippocampal region and neuroinflammation. Recently, we synthesized a set of camphor-resorcinol derivatives, which represent a novel series of CB2 receptor selective ligands. Most of the novel compounds exhibited potent binding and agonistic properties at the CB2 receptors, with very low affinity for the CB1 receptor, and some were highly anti-inflammatory. This selective binding correlated with their intrinsic activities. HU-910 and HU-914 were selected in the present study to evaluate their potential effect in the pathophysiology of traumatic brain injury (TBI). In mice and rats, subjected to closed head injury and treated with these novel compounds, we showed enhanced neurobehavioral recovery, inhibition of TNF-alpha production, increased synaptogenesis and partial recovery of the cortical spinal tract. We propose these CB2 agonists as potential drugs for development of novel therapeutic modality to TBI.”

https://www.ncbi.nlm.nih.gov/pubmed/30489198

https://www.liebertpub.com/doi/10.1089/neu.2018.6063

Medical Cannabis for Older Patients.

“Interest in the medicinal use of cannabis and cannabinoids is mounting worldwide. Fueled by enthusiastic media coverage, patients perceive cannabinoids as a natural remedy for many symptoms. Cannabinoid use is of particular interest for older individuals who may experience symptoms such as chronic pain, sleep disturbance, cancer-related symptoms and mood disorders, all of which are often poorly controlled by current drug treatments that may also incur medication-induced side effects. This review provides a summary of the evidence for use of cannabinoids, and medical cannabis in particular, for this age group, with attention to efficacy and harms. Evidence of efficacy for relief of an array of symptoms is overall scanty, and almost all study participants are aged < 60 years. The risk of known and potential adverse effects is considerable, with concerns for cognitive, cardiovascular and gait and stability effects in older adults. Finally, in light of the paucity of clinical evidence and increasing patient requests for information or use, we propose a pragmatic clinical approach to a rational dialogue with older patients, highlighting the importance of individual benefit-risk assessment and shared patient-clinician decision making.”

https://www.ncbi.nlm.nih.gov/pubmed/30488174

https://link.springer.com/article/10.1007%2Fs40266-018-0616-5

“Our study finds that the therapeutic use of cannabis is safe and efficacious in the elderly population. Cannabis use may decrease the use of other prescription medicines, including opioids.” https://www.ncbi.nlm.nih.gov/pubmed/29398248

“Medical cannabis significantly safer for elderly with chronic pain than opioids: study” https://medicalxpress.com/news/2018-02-medical-cannabis-significantly-safer-elderly.html

Novel inverse agonists for the orphan G protein-coupled receptor 6.

Image result for Heliyon.

“The orphan G protein-coupled receptor 6 (GPR6) displays unique promise as a therapeutic target for the treatment of neuropsychiatric disorders due to its high expression in the striatopallidal neurons of the basal ganglia.

GPR6, along with closely related orphan receptors GPR3 and GPR12, are phylogenetically related to CB1 and CB2 cannabinoid receptors.

In the current study, we performed concentration-response studies on the effects of three different classes of cannabinoids: endogenous, phyto-, and synthetic, on both GPR6-mediated cAMP accumulation and β-arrestin2 recruitment. In addition, structure-activity relationship studies were conducted on cannabidiol (CBD), a recently discovered inverse agonist for GPR6.

We have identified four additional cannabinoids, cannabidavarin (CBDV), WIN55212-2, SR141716A and SR144528, that exert inverse agonism on GPR6. Furthermore, we have discovered that these cannabinoids exhibit functional selectivity toward the β-arrestin2 recruitment pathway.

These novel, functionally selective inverse agonists for GPR6 can be used as research tools and potentially developed into therapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/30480157

Cannabinoids as Regulators of Neural Development and Adult Neurogenesis

“Neurogenesis plays an indispensable role in the formation of the nervous system during development. The discovery that the adult brain still maintains neurogenic niches that allow the continued production of new cells after birth has changed the field of neuroscience. It has also opened a new venue of opportunities for the treatment of central nervous system disorders related to neuronal loss. This chapter has reviewed the studies showing that genetic or pharmacological manipulation of cannabinoid receptors (CB1 and CB2) or the enzymes responsible for endocannabinoid metabolism modify/regulate cell proliferation and neurogenesis during development and in the adult brain. A better characterization of the mechanisms involved in these effects could contribute to the development of new therapeutic alternatives to neurodegenerative and psychiatric disorders.”

https://link.springer.com/chapter/10.1007/978-3-319-49343-5_6?fbclid=IwAR1yxGqvrq_9Zva3HLEqjh2WrNRTxPN6Hy_IO8l2IN8v9BCNBG2jDks9N1w

Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells.

Image result for jni journal of inflammation

“Neuroinflammation plays a vital role in Alzheimer’s disease and other neurodegenerative conditions.

The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia.

Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer’s disease, Parkinson, and multiple sclerosis (MS).”

https://www.ncbi.nlm.nih.gov/pubmed/30453998

https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1362-7

“Pharmacological characterization of GPR55, a putative cannabinoid receptor.”  https://www.ncbi.nlm.nih.gov/pubmed/20298715

“Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/

The Highs and Lows of the Endocannabinoid System—Another Piece to the Epilepsy Puzzle?

American Epilepsy Society

“Cannabis extracts have been used for the treatment of epilepsy for centuries.

Yet, until recently, this empirical use was not linked to a known mechanism of action. Of the two main and most frequently investigated compounds derived from the cannabis plant, the mechanism of action of tetrahydrocannabinol (THC) is relatively clear and well documented (via CB1R distributed mainly centrally and CB2R distributed mainly peripherally).

The components of endocannabinoid system (ECS) are omnipresent in our bodies and have very divergent roles. Modulating ECS may have therapeutic potential in many human maladies, including psychiatric disorders (e.g., depression, posttraumatic stress disorder, anxiety, or schizophrenia), neurologic conditions, including epilepsy and neurodegenerative processes, diabetes and its complications, obesity, pain management, cancer treatment, graft versus host disease, treatment of chemotherapy side effects, and so on. The list is long, and it is constantly growing.

We investigated changes in the endocannabinoid system and glucose metabolism during temporal lobe epileptogenesis.

This study provides unique evidence that the CB1R is dynamically and progressively involved from the start of mesial temporal lobe epileptogenesis.”

http://epilepsycurrents.org/doi/10.5698/1535-7597.18.5.315

Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: in vitro screening of critical parameters.

 European Journal of Pharmaceutics and Biopharmaceutics“The therapeutic potential of cannabinoids has been truly constrained heretofore due to their strong psychoactive effects and their high lipophilicity. In this context, precisely due to the lack of psychoactive properties, cannabidiol (CBD), the second major component of Cannabis sativa, arises as the phytocannabinoid with the most auspicious therapeutic potential.

Hence, the incorporation of CBD in lipid nanocapsules (LNCs) will contribute to overcome the dosing problems associated with cannabinoids.

Herein, we have prepared LNCs decorated and loaded with CBD for glioma therapy and screened in vitro their critical parameters. On the one hand, we have encapsulated CBD into the oily core of LNCs to test their in vitro efficacy as extended-release carriers against the human glioblastoma cell line U373MG. The in vitro antitumor effect was highly dependent on the size of LNCs due to its pivotal role in the extent of CBD release.

Effectively, a comparison between two differently-sized LNCs (namely, 20-nm and 50-nm sized carriers) showed that the smaller LNCs reduced by 3.0-fold the IC50 value of their 50-nm sized counterparts. On the other hand, to explore the potential of this phytocannabinoid to target any of the cannabinoid receptors overexpressed in glioma cells, we decorated the LNCs with CBD. This functionalization strategy enhanced the in vitro glioma targeting by 3.4-fold in comparison with their equally-sized undecorated counterparts.

Lastly, the combination of CBD-loading with CBD-functionalization further reduced the IC50 values. Hence, the potential of these two strategies of CBD incorporation into LNCs deserves subsequent in vivo evaluation.”

https://www.ncbi.nlm.nih.gov/pubmed/30472144

https://www.sciencedirect.com/science/article/abs/pii/S0939641118311366?via%3Dihub

Cannabinoids for Treating Cardiovascular Disorders: Putting Together a Complex Puzzle.

Image result for j microsc ultrastruct

“Cannabinoids have been increasingly gaining attention for their therapeutic potential in treating various cardiovascular disorders. These disorders include myocardial infarction, hypertension, atherosclerosis, arrhythmias, and metabolic disorders.

The aim of this review is to cover the main actions of cannabinoids on the cardiovascular system by examining the most recent advances in this field and major literature reviews.

It is well recognized that the actions of cannabinoids are mediated by either cannabinoid 1 or cannabinoid 2 receptors (CB2Rs). Endocannabinoids produce a triphasic response on blood pressure, while synthetic cannabinoids show a tissue-specific and species-specific response.

Blocking cannabinoid 1 receptors have been shown to be effective against cardiometabolic disorders, although this should be done peripherally. Blocking CB2Rs may be a useful way to treat atherosclerosis by affecting immune cells. The activation of CB2Rs was reported to be useful in animal studies of myocardial infarction and cardiac arrhythmia.

Although cannabinoids show promising effects in animal models, this does not always translate into human studies, and therefore, extensive clinical studies are needed to truly establish their utility in treating cardiovascular disease.”

https://www.ncbi.nlm.nih.gov/pubmed/30464888

Naturally occurring compounds as pancreatic cancer therapeutics.

Related image

“Naturally occurring small molecule compounds have long been in the spotlight of pancreatic cancer research as potential therapeutics to prevent cancer progression and sensitize chemoresistant tumors. The hope is that terminal pancreatic cancer patients receiving aggressive chemotherapy can benefit from an increase in treatment efficacy without adding further toxicity by way of utilizing natural compounds. While preclinical studies on a number of natural compounds, such as resveratrol, curcumin, rapalogs and cannabinoids, show promising preclinical results, little has translated into clinical practice, though a number of other compounds hold clinical potential. Nevertheless, recent advances in compound formulation may increase the clinical utility of these compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/30459936

“The combination of natural products and standard of care chemotherapy has the potential to increase quality of life and lifespan in pancreatic cancer patients, even though a number of hurdles need to be overcome for routine clinical use.”  http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26234&path[]=81769

“Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells via Endoplasmic Reticulum Stress–Related Genes. In conclusion, results presented here show that cannabinoids exert a remarkable antitumoral effect on pancreatic cancer cells in vitro and in vivo due to their ability to selectively induce apoptosis of these cells via activation of the p8-ATF-4-TRB3 proapoptotic pathway.”  http://cancerres.aacrjournals.org/content/66/13/6748