IMPACT OF NEUROIMMUNE ACTIVATION INDUCED BY ALCOHOL OR DRUG ABUSE ON ADOLESCENT BRAIN DEVELOPMENT.

International Journal of Developmental Neuroscience

“Evidence obtained in recent decades has demonstrated that the brain still matures in adolescence. Changes in neural connectivity occur in different regions, including cortical and subcortical structures, which undergo modifications in white and gray matter densities. These alterations concomitantly occur in some neurotransmitter systems and hormone secretion, which markedly influence the refinement of certain brain areas and neural circuits.

The immaturity of the adolescent brain makes it more vulnerable to the effects of alcohol and drug abuse, whose use can trigger long-term behavioral dysfunction.

This article reviews the action of alcohol and drug abuse (cannabis, cocaine, opioids, amphetamines, anabolic androgenic steroids) in the adolescent brain, and their impact on both cognition and behavioral dysfunction, including predisposition to drug abuse in later life. It also discusses recent evidence that indicates the role of the neuroimmune system response and neuroinflammation as mechanisms that participate in many actions of ethanol and drug abuse in adolescence, including the neurotoxicity and alterations in neurocircuitry that contribute to the dysfunctional behaviors associated with addiction.

The new data suggest the therapeutic potential of anti-inflammatory targets to prevent the long-term consequences of drug abuse in adolescence.”

https://www.ncbi.nlm.nih.gov/pubmed/30468786

https://www.sciencedirect.com/science/article/pii/S073657481830251X?via%3Dihub

“Cannabinoids as novel anti-inflammatory drugs.”  https://www.ncbi.nlm.nih.gov/pubmed/20191092

The endocannabinoid signaling system in cancer

Image result for trends in pharmacological sciences“Changes in lipid metabolism are intimately related to cancer. Several classes of bioactive lipids play roles in the regulation of signaling pathways involved in neoplastic transformation and tumor growth and progression.

The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancer pathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer. We also discuss the enzyme MAGL, a key player in endocannabinoid metabolism that was recently recognized as a marker of tumor lipogenic phenotype.”

https://www.cell.com/trends/pharmacological-sciences/fulltext/S0165-6147(13)00044-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0165614713000448%3Fshowall%3Dtrue

The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

 

https://www.ncbi.nlm.nih.gov/pubmed/30427077

https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042

Cannabis, cannabinoids and the endocannabinoid system – is there therapeutic potential for inflammatory bowel disease?

Image result for jcc journal

“Cannabis sativa and its extracts have been used for centuries both medicinally and recreationally. There is accumulating evidence that exogenous cannabis and related cannabinoids improve symptoms associated with inflammatory bowel disease such as pain, loss of appetite, and diarrhoea. In vivo, exocannabinoids have been demonstrated to improve colitis, mainly in chemical models. Exocannabinoids signal through the endocannabinoid system, an increasingly understood network of endogenous lipid ligands and their receptors, together with a number of synthetic and degradative enzymes and the resulting products. Modulating the endocannabinoid system using pharmacological receptor agonists, genetic knockout models, or inhibition of degradative enzymes have largely shown improvements in colitis in vivo. Despite these promising experimental results, this has not translated into meaningful benefits for human IBD in the few clinical trials which have been conducted to date. The largest study to date being limited by poor medication tolerance due to the Δ9-tetrahydrocannabinol component. This review article synthesises the current literature surrounding the modulation of the endocannabinoid system and administration of exocannabinoids in experimental and human IBD. Findings of clinical surveys and studies of cannabis use in IBD are summarised. Discrepancies in the literature are highlighted together with identifying novel areas of interest.”

Cannabis Therapeutics and the Future of Neurology.

Image result for frontiers in integrative neuroscience

“Neurological therapeutics have been hampered by its inability to advance beyond symptomatic treatment of neurodegenerative disorders into the realm of actual palliation, arrest or reversal of the attendant pathological processes.

While cannabis-based medicines have demonstrated safety, efficacy and consistency sufficient for regulatory approval in spasticity in multiple sclerosis (MS), and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges remain.

This review will examine the intriguing promise that recent discoveries regarding cannabis-based medicines offer to neurological therapeutics by incorporating the neutral phytocannabinoids tetrahydrocannabinol (THC), cannabidiol (CBD), their acidic precursors, tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), and cannabis terpenoids in the putative treatment of five syndromes, currently labeled recalcitrant to therapeutic success, and wherein improved pharmacological intervention is required: intractable epilepsy, brain tumors, Parkinson disease (PD), Alzheimer disease (AD) and traumatic brain injury (TBI)/chronic traumatic encephalopathy (CTE).

Current basic science and clinical investigations support the safety and efficacy of such interventions in treatment of these currently intractable conditions, that in some cases share pathological processes, and the plausibility of interventions that harness endocannabinoid mechanisms, whether mediated via direct activity on CB1 and CB2 (tetrahydrocannabinol, THC, caryophyllene), peroxisome proliferator-activated receptor-gamma (PPARγ; THCA), 5-HT1A (CBD, CBDA) or even nutritional approaches utilizing prebiotics and probiotics.

The inherent polypharmaceutical properties of cannabis botanicals offer distinct advantages over the current single-target pharmaceutical model and portend to revolutionize neurological treatment into a new reality of effective interventional and even preventative treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/30405366

https://www.frontiersin.org/articles/10.3389/fnint.2018.00051/full

Medical Use of Cannabinoids.

“Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30374797

https://link.springer.com/article/10.1007%2Fs40265-018-0996-1

Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer.

 Journal of Controlled Release

“Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with poor prognosis and inadequate therapeutic outcome. This contribution reports the use of a cannabinoid derivative, WIN55,212-2 (WIN) on the growth of TNBC in a 4T1 syngeneic mouse model.

To reduce the well-known psychoactive side effects of cannabinoids, we prepared a nanomicellar formulation of WIN (SMA-WIN). In vivo biodistribution, in silico ADME predictions, anticancer activity, and psychoactive effect of WIN and SMA-WIN studies suggest that SMA-WIN formulation can reduce to greater extent tumor growth with milder psychoactive side effects when compared to free drug.

Finally, the effects of WIN and SMA-WIN in combination with doxorubicin (Doxo), an established chemotherapeutic agent for the treatment of TNBC, were investigated in vitro and in vivo. SMA-WIN in combination with Doxo showed therapeutic efficacy and was able to reduce the tumor volume of TNBC murine model drastically. Moreover, SMA-WIN, while favoring drug tumor accumulation, minimized the adverse psychoactive effects that have impeded the use of this agent in the clinic.

To our knowledge, this is the first report for the assessment of cannabinoid nanoparticles in vivo for the treatment of TNBC and its enhanced anticancer effect at low doses with Doxo. These findings suggest a new therapeutic strategy in the management of TNBC.”

https://www.ncbi.nlm.nih.gov/pubmed/30367922

https://www.sciencedirect.com/science/article/pii/S0168365918306114?via%3Dihub

What do Cochrane systematic reviews say about the use of cannabinoids in clinical practice?

SciELO - Scientific Electronic Library Online

“The therapeutic effects of cannabinoid compounds have been the center of many investigations.

This study provides a synthesis on all Cochrane systematic reviews (SRs) that assessed the use of cannabinoids as a therapeutic approach.

CONCLUSIONS:

This review identified eight Cochrane systematic reviews that provided evidence of unknown to moderate quality regarding the use of cannabinoids as a therapeutic intervention. Further studies are still imperative for solid conclusions to be reached regarding practical recommendations.”

Light-activatable cannabinoid prodrug for combined and target-specific photodynamic and cannabinoid therapy.

“Cannabinoids are emerging as promising antitumor drugs. However, complete tumor eradication solely by cannabinoid therapy remains challenging. In this study, we developed a far-red light activatable cannabinoid prodrug, which allows for tumor-specific and combinatory cannabinoid and photodynamic therapy. This prodrug consists of a phthalocyanine photosensitizer (PS), reactive oxygen species (ROS)-sensitive linker, and cannabinoid. It targets the type-2 cannabinoid receptor (CB2R) overexpressed in various types of cancers. Upon the 690-nm light irradiation, the PS produces cytotoxic ROS, which simultaneously cleaves the ROS-sensitive linker and subsequently releases the cannabinoid drug. We found that this unique multifunctional prodrug design offered dramatically improved therapeutic efficacy, and therefore provided a new strategy for targeted, controlled, and effective antitumor cannabinoid therapy.”

Anandamide Effects in a Streptozotocin-Induced Alzheimer’s Disease-Like Sporadic Dementia in Rats.

Image result for frontiers in neuroscience

“Alzheimer’s disease (AD) is characterized by multiple cognitive deficits including memory and sensorimotor gating impairments as a result of neuronal and synaptic loss.

The endocannabinoid system plays an important role in these deficits but little is known about its influence on the molecular mechanism regarding phosphorylated tau (p-tau) protein accumulation – one of the hallmarks of AD -, and on the density of synaptic proteins.

Thus, the aim of this study was to investigate the preventive effects of anandamide (N-arachidonoylethanolamine, AEA) on multiple cognitive deficits and on the levels of synaptic proteins (syntaxin 1, synaptophysin and synaptosomal-associated protein, SNAP-25), cannabinoid receptor type 1 (CB1) and molecules related to p-tau degradation machinery (heat shock protein 70, HSP70), and Bcl2-associated athanogene (BAG2) in an AD-like sporadic dementia model in rats using intracerebroventricular (icv) injection of streptozotocin (STZ).

This study showed, for the first time, that the administration of an endocannabinoid can prevent AD-like effects induced by STZ, boosting further investigations about the modulation of endocannabinoid levels as a therapeutic approach for AD.”

“Altogether, our results showed, for the first time, that the administration of an endocannabinoid can prevent cognitive, synaptic and histopatological AD-like alterations induced by STZ, thus prompting endocannabinoids as a candidate therapeutic target in AD.”  https://www.frontiersin.org/articles/10.3389/fnins.2018.00653/full