Cannabidiol as a Therapeutic Alternative for Post-traumatic Stress Disorder: From Bench Research to Confirmation in Human Trials.

 Related image

“Post-traumatic stress disorder (PTSD) is characterized by poor adaptation to a traumatic experience. This disorder affects approximately 10% of people at some point in life. Current pharmacological therapies for PTSD have been shown to be inefficient and produce considerable side effects.

Since the discovery of the involvement of the endocannabinoid (eCB) system in emotional memory processing, pharmacological manipulation of eCB signaling has become a therapeutic possibility for the treatment of PTSD.

Cannabidiol (CBD), a phytocannabinoid constituent of Cannabis sativa without the psychoactive effects of Δ9-tetrahydrocannabinol, has gained particular attention. Preclinical studies in different rodent behavioral models have shown that CBD can both facilitate the extinction of aversive memories and block their reconsolidation, possibly through potentialization of the eCB system.

These results, combined with the currently available pharmacological treatments for PTSD being limited, necessitated testing CBD use with the same therapeutic purpose in humans as well.

Indeed, as observed in rodents, recent studies have confirmed the ability of CBD to alter important aspects of aversive memories in humans and promote significant improvements in the symptomatology of PTSD.

The goal of this review was to highlight the potential of CBD as a treatment for disorders related to inappropriate retention of aversive memories, by assessing evidence from preclinical to human experimental studies.”

https://www.ncbi.nlm.nih.gov/pubmed/30087591

https://www.frontiersin.org/articles/10.3389/fnins.2018.00502/full

Effect of chronic THC administration in the reproductive organs of male mice, spermatozoa and in vitro fertilization.

Biochemical Pharmacology

“The increased use of cannabis as a therapeutic drug in recent years has raised some concerns due to its potential effects on reproductive health. With regards to the male, the endocannabinoid system is involved in the spermatogenesis and in the sperm function.

The chronic use of tetrahidrocannabinol (THC) has been associated with sperm anomalies, decreased sperm motility and structural changes in the testis. However, whether THC affects sperms ability to fertilize and to generate embryos remains unclear.

The aim of this study was to evaluate this effect using a mice model of THC chronic treatment. For this purpose, a chronic treatment with THC was carried out. Mice were randomly allocated into two groups: an experimental group treated with a daily dose of 10 mg/kg-body weight THC for a period of 30 days and a control group treated with a vehicle.

The THC-mice cortex showed a significant decrease of mRNA of Cnr1 compared to control-mice while, in the testis, the expression of Cnr1 was not affected. The weight of testis and epididymis and the histological analysis did not show any change between groups.

On the other hand, no changes were observed in the sperm motility or the sperm concentration. The chronic use of THC did not generate any methylation change in the three CpG regions of Cnn1 analysed, neither in the brain nor in the embryos generated by in vitro fertilization (IVF).

Finally, the embryo production by IVF was no different using spermatozoa from both THC and control mice. This work contradicts the belief that THC consumption has a negative effect on male reproductive processes.”

Elucidation of structure-function relationship of THCA and CBDA synthase from Cannabis sativa L.

Journal of Biotechnology

“Cannabinoids are secondary natural products from the plant Cannabis sativa L.

Therapeutic indications of cannabinoids currently comprise a significant area of medicinal research.

We have expressed the Δ9-tetrahydrocannabinolic acid synthase (THCAS) and cannabidiolic acid synthase (CBDAS) recombinantly in Komagataella phaffii and could detect eight different products with a cannabinoid scaffold after conversion of the precursor cannabigerolic acid (CBGA).

Besides five products remaining to be identified, both enzymes were forming three major cannabinoids of C. sativa – Δ9-tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA).

These studies lay the groundwork for further research as well as biotechnological cannabinoid production.”

Chronic treatment with the phytocannabinoid Cannabidivarin (CBDV) rescues behavioural alterations and brain atrophy in a mouse model of Rett syndrome.

Neuropharmacology

“Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioural and physiological symptoms. RTT is caused by mutations in the MECP2 gene in about 95% of cases and to date no cure is available.

The endocannabinoid system modulates several physiological processes and behavioural responses that are impaired in RTT and its deregulation has been associated with neuropsychiatric disorders which have symptoms in common with RTT.

The present study evaluated the potential therapeutic efficacy for RTT of cannabidivarin (CBDV), a non-psychotropic phytocannabinoid from Cannabis sativa that presents antagonistic properties on the G protein-coupled receptor 55 (GPR55), the most recently identified cannabinoid receptor.

Present results demonstrate that systemic treatment with CBDV (2, 20, 100 mg/Kg ip for 14 days) rescues behavioural and brain alterations in MeCP2-308 male mice, a validated RTT model. The CBDV treatment restored the compromised general health status, the sociability and the brain weight in RTT mice. A partial restoration of motor coordination was also observed. Moreover, increased levels of GPR55 were found in RTT mouse hippocampus, suggesting this G protein-coupled receptor as new potential target for the treatment of this disorder.

Present findings highlight for the first time for RTT the translational relevance of CBDV, an innovative therapeutic agent that is under active investigation in the clinical setting.”

Therapeutic applications of cannabinoids.

Chemico-Biological Interactions

“The psychoactive properties of cannabinoids are well known and there has been a continuous controversy regarding the usage of these compounds for therapeutic purposes all over the world. Their use for medical and research purposes are restricted in various countries. However, their utility as medications should not be overshadowed by their negative physiological activities.

This review article is focused on the therapeutic potential and applications of phytocannabinoids and endocannabinoids. It highlights their mode of action, overall effects on physiology, various in vitro and in vivo studies that have been done so far and the extent to which these compounds can be useful in different disease conditions such as cancer, Alzheimer’s disease, multiple sclerosis, pain, inflammation, glaucoma and many others.

Thus, this work is an attempt to make the readers understand the positive implications of these compounds and indicates the significant developments that can occur upon utilizing cannabinoids as therapeutic agents.”  https://www.ncbi.nlm.nih.gov/pubmed/30040916

“Cannabinoids can be used as therapeutic agents.”   https://www.sciencedirect.com/science/article/pii/S0009279718307373?via%3Dihub

Cannabinoid type 2 receptors mediate a cell type-specific self-inhibition in cortical neurons.

 Neuropharmacology

“Endogenous cannabinoids are diffusible lipid ligands of the main cannabinoid receptors type 1 and 2 (CB1R and CB2R). In the central nervous system endocannabinoids are produced in an activity-dependent manner and have been identified as retrograde modulators of synaptic transmission.

Additionally, some neurons display a cell-autonomous slow self-inhibition (SSI) mediated by endocannabinoids. In these neurons, repetitive action potential firing triggers the production of endocannabinoids, which induce a long-lasting hyperpolarization of the membrane potential, rendering the cells less excitable. Different endocannabinoid receptors and effector mechanisms have been described underlying SSI in different cell types and brain areas.

Here, we investigate SSI in neurons of layer 2/3 in the somatosensory cortex. High-frequency bursts of action potentials induced SSI in pyramidal cells (PC) and regular spiking non-pyramidal cells (RSNPC), but not in fast-spiking interneurons (FS). In RSNPCs the hyperpolarization was accompanied by a change in input resistance due to the activation of G protein-coupled inward-rectifying K+ (GIRK) channels. A CB2R-specific agonist induced the long-lasting hyperpolarization, whereas preincubation with a CB2R-specific inverse agonist suppressed SSI. Additionally, using cannabinoid receptor knockout mice, we found that SSI was still intact in CB1R-deficient but abolished in CB2R-deficient mice.

Taken together, we describe an additional SSI mechanism in which the activity-induced release of endocannabinoids activates GIRK channels via CB2Rs. These findings expand our knowledge about cell type-specific differential neuronal cannabinoid receptor signaling and suggest CB2R-selective compounds as potential therapeutic approaches.”

https://www.ncbi.nlm.nih.gov/pubmed/30025920

https://www.sciencedirect.com/science/article/pii/S0028390818303885?via%3Dihub

Role of the Endocannabinoid System in the Pathophysiology of Schizophrenia: Implications for Pharmacological Intervention.

 

“The term schizophrenia describes a group of multifaceted psychiatric conditions causing significant impairment of the quality of life of affected patients. Although multiple pharmacological treatment options exist, e.g. first- or second-generation antipsychotics, these therapeutics often cause disturbing side effects, such as extrapyramidal symptoms, prolactin increase, sexual dysfunction and/or metabolic syndrome. Furthermore, cognitive impairments and negative symptoms, two factors significantly influencing the course and outcome, are not sufficiently addressed by the available antipsychotics.

Since its discovery, multiple clinical and preclinical studies have linked the endocannabinoid system to schizophrenia.

Both the endocannabinoid anandamide and the cannabinoid CB1 receptor are deeply linked to underlying disease processes. Based hereon, clinical trials in schizophrenia have explored cannabidiol, a primary component of Cannabis sativa, and rimonabant, a partial antagonist to the CB1 receptor.

While the latter did not reveal positive results, cannabidiol significantly ameliorated psychotic symptoms, which was associated with an increase in anandamide serum levels. However, the exact mechanisms of the antipsychotic effects of cannabidiol are not fully understood, and, furthermore, only a limited number of clinical trials in humans have been concluded to date.

Thus, the level of proof of safety and efficacy required to approve the therapeutic use of cannabidiol in schizophrenia is currently lacking. However, cannabidiol is a promising candidate as an effective and mechanistically different antipsychotic treatment with a favourable side-effect profile. We therefore conclude that further studies are urgently needed to clarify the antipsychotic effects and safety profile of cannabidiol, and to fully explore its potential antipsychotic mechanism.”

https://www.ncbi.nlm.nih.gov/pubmed/30022465

https://link.springer.com/article/10.1007%2Fs40263-018-0539-z

Cannabidiol does not display drug abuse potential in mice behavior.

Image result for aps acta pharmacologica

“Recent evidence suggests that cannabidiol (CBD) may be useful for the treatment of different neuropsychiatric disorders.

However, some controversy regarding its profile as a drug of abuse hampers the further development of basic and clinical studies.

In this study, the behavioral profile of CBD as a potential drug of abuse was evaluated in C57BL/6J mice.

Taken together, these results show that CBD lacks activity as a drug of abuse and should stimulate the development of the basic and clinical studies needed to elucidate its potential therapeutic use for the treatment of neuropsychiatric and drug use disorders.”

Modulation of the endocannabinoid system by sex hormones: Implications for Posttraumatic Stress Disorder.

Neuroscience & Biobehavioral Reviews

“The endocannabinoid system is an increasingly recognised pharmacological target for treating stress and anxiety disorders, including post-traumatic stress disorder (PTSD). Recent preclinical developments have implicated the endocannabinoid system in stress responses, emotional memories and fear extinction, all critical to PTSD aetiology. However, preclinical research in endocannabinoid biology has neglected the influential role of sex hormone differences on PTSD symptomology, which is particularly important given that PTSD is twice as common in women as in men. In this review, we compile and consider the evidence that the endocannabinoid system is influenced by ovarian hormones, with application to stress disorders such as PTSD. It is clear that therapeutic modulation of the endocannabinoid system needs to be approached with awareness of ovarian hormonal influences, and knowledge of these influences may enhance treatment outcomes for female PTSD populations.”

Marijuana Use in Adults Living with Sickle Cell Disease.

Cannabis and Cannabinoid Research cover image

“Introduction: Legal access to marijuana, most frequently as “medical marijuana,” is becoming more common in the United States, but most states do not specify sickle cell disease as a qualifying condition. We were aware that some of our patients living with sickle cell disease used illicit marijuana, and we sought more information about this.

Results: Among 58 patients surveyed, 42% reported marijuana use within the past 2 years. Among users, most endorsed five medicinal indications; a minority reported recreational use. Among 57 patients who had at least one urine drug test, 18% tested positive for cannabinoids only, 12% tested positive for cocaine and/or phencyclidine only, and 5% tested positive for both cannabinoids and cocaine/phencyclidine. Subsequent to these studies, sickle cell disease became a qualifying condition for medical marijuana in our state. In the interval ∼1.5 years, 44 patients have requested certification.

Conclusion: Our findings and those of others create a rationale for research into the possible therapeutic effects of marijuana or cannabinoids, the presumed active constituents of marijuana, in sickle cell disease. Explicit inclusion of sickle cell disease as a qualifying condition for medical marijuana might reduce illicit marijuana use and related risks and costs to both persons living with sickle cell disease and society.”