A Cross-Sectional Study of Cannabidiol Users.

Cannabis and Cannabinoid Research cover image

“Introduction: Preclinical and clinical studies suggest that cannabidiol (CBD) found in Cannabis spp. has broad therapeutic value. CBD products can currently be purchased online, over the counter and at Cannabis-specific dispensaries throughout most of the country, despite the fact that CBD is generally deemed a Schedule I controlled substance by the U.S. Drug Enforcement Administration and renounced as a dietary supplement ingredient by the U.S. Food and Drug Administration. Consumer demand for CBD is high and growing, but few studies have examined the reasons for increasing CBD use.

Results: Almost 62% of CBD users reported using CBD to treat a medical condition. The top three medical conditions were pain, anxiety, and depression. Almost 36% of respondents reported that CBD treats their medical condition(s) “very well by itself,” while only 4.3% reported “not very well.” One out of every three users reported a nonserious adverse effect. The odds of using CBD to treat a medical condition were 1.44 (95% confidence interval, 1.16-1.79) times greater among nonregular users of Cannabis than among regular users.

Conclusion: Consumers are using CBD as a specific therapy for multiple diverse medical conditions-particularly pain, anxiety, depression, and sleep disorders. These data provide a compelling rationale for further research to better understand the therapeutic potential of CBD.”

Cannabinoids, the Heart of the Matter

Image result for jaha journal

“Cardiovascular disease (CVD) is a global epidemic representing the leading cause of death in some Western countries. Endocannabinoids and cannabinoid‐related compounds may be a promising approach as therapeutic agents for cardiovascular diseases. This review highlights the potential of cannabinoids and their receptors as targets for intervention.

In summary, the endocannabinoid system is highly active in cardiovascular disease states. Modulation of the ECS, CB1, and TRPV1 antagonism, as well as CB2 agonism, have proven to modulate disease state and severity in CVD. Studies are underway to develop drugs to change the course of cardiovascular diseases.

If therapeutic potential resides in a single molecule component or a derivative, then production and regulation of the therapy are straightforward. If the efficacious agent is a complex mixture that reflects some or all of the secondary metabolome complexity of Cannabis sativa, then safe and consistent production become challenging.”  http://jaha.ahajournals.org/content/7/14/e009099https://www.ncbi.nlm.nih.gov/pubmed/30006489

Integrating endocannabinoid signaling in the regulation of anxiety and depression

Image result for aps (acta pharmacologica sinica)

“Brain endogenous cannabinoid (eCB) signaling seems to harmonize appropriate behavioral responses, which are essential for the organism’s long-term viability and homeostasis. Dysregulation of eCB signaling contributes to negative emotional states and increased stress responses. An understanding of the underlying neural cell populations and neural circuit regulation will enable the development of therapeutic strategies to mitigate behavioral maladaptation and provide insight into the influence of eCB on the neural circuits involved in anxiety and depression. This review focuses on recent evidence that has added a new layer of complexity to the idea of targeting the eCB system for therapeutic benefits in neuropsychiatric disease and on the future research direction of neural circuit modulation.” 

https://www.nature.com/articles/s41401-018-0051-5

Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression.

Cannabis and Cannabinoid Research cover image

“Colorectal cancer remains the third most common cancer diagnosis and fourth leading cause of cancer-related mortality worldwide. Purified cannabinoids have been reported to prevent proliferation, metastasis, and induce apoptosis in a variety of cancer cell types. However, the active compounds from Cannabis sativa flowers and their interactions remain elusive.

Research Aim: This study was aimed to specify the cytotoxic effect of C. sativa-derived extracts on colon cancer cells and adenomatous polyps by identification of active compound(s) and characterization of their interaction.

Conclusions:C. sativa compounds interact synergistically for cytotoxic activity against colon cancer cells and induce cell cycle arrest, apoptotic cell death, and distinct gene expression. F3, F7, and F7+F3 are also active on adenomatous polyps, suggesting possible future therapeutic value.”

https://www.ncbi.nlm.nih.gov/pubmed/29992185

https://www.liebertpub.com/doi/10.1089/can.2018.0010

Development of a Cannabinoid-Based Photoaffinity Probe to Determine the Δ8/9-Tetrahydrocannabinol Protein Interaction Landscape in Neuroblastoma Cells.

Cannabis and Cannabinoid Research cover image

“Δ9-Tetrahydrocannabinol (THC), the principle psychoactive ingredient in Cannabis, is widely used for its therapeutic effects in a large variety of diseases, but it also has numerous neurological side effects. The cannabinoid receptors (CBRs) are responsible to a large extent for these, but not all biological responses are mediated via the CBRs.

Objectives: The identification of additional target proteins of THC to enable a better understanding of the (adverse) physiological effects of THC.

Methods: In this study, a chemical proteomics approach using a two-step photoaffinity probe is applied to identify potential proteins that may interact with THC.

Results: Photoaffinity probe 1, containing a diazirine as a photocrosslinker, and a terminal alkyne as a ligation handle, was synthesized in 14 steps. It demonstrated high affinity for both CBRs. Subsequently, two-step photoaffinity labeling in neuroblastoma cells led to identification of four potential novel protein targets of THC. The identification of these putative protein hits is a first step towards a better understanding of the protein interaction profile of THC, which could ultimately lead to the development of novel therapeutics based on THC.”

https://www.ncbi.nlm.nih.gov/pubmed/29992186

https://www.liebertpub.com/doi/10.1089/can.2018.0003

Modulation of the Cannabinoid System: A New Perspective for the Treatment of the Alzheimer’s Disease.

“The pathogenesis of Alzheimer’s disease (AD) is somewhat complex and has yet to be fully understood. As the effectiveness of the therapy currently available for AD has proved to be limited, the need for new drugs has become increasingly urgent.

The modulation of the endogenous cannabinoid system (ECBS) is one of the potential therapeutic approaches that is attracting a growing amount of interest. The ECBS consists of endogenous compounds and receptors. The receptors CB1 and CB2 have already been well characterized: CB1 receptors, which are abundant in the brain, particularly in the hippocampus, basal ganglia and cerebellum, regulate memory function and cognition.

It has been suggested that the activation of CB1 receptors reduces intracellular Ca concentrations, inhibits glutamate release and enhances neurotrophin expression and neurogenesis. CB2 receptors are expressed, though to a lesser extent, in the central nervous system, particularly in microglia and in immune system cells involved in the release of cytokines. CB2 receptors have been shown to be upregulated in neuritic plaque-associated migroglia in the hippocampus and entorhinal cortex of patients, which suggests that these receptors play a role in the inflammatory pathology of AD.

The role of the ECBS in AD is supported by cellular and animal models. By contrast, few clinical studies designed to investigate therapies aimed at reducing behaviour disturbances, especially night-time agitation, eating behaviour and aggressiveness, have yielded positive results. In this review, we will describe how the manipulation of the ECBS offers a potential approach to the treatment of AD.”

The Management of Lower Urinary Tract Dysfunction in Multiple Sclerosis.

Current Neurology and Neuroscience Reports

“Multiple sclerosis (MS) is the most frequent neuroinflammatory disease of the central nervous system and is commonly associated with lower urinary tract (LUT) dysfunction. As a consequence, health-related quality of life is often impaired and the upper urinary tract might be at risk for damage. The aim of this review is to give an overview of current treatment options for LUT dysfunction in patients with MS.

RECENT FINDINGS:

The treatment is tailored to the type of dysfunction-storage or voiding dysfunction-beginning with conservative treatment options and ending with invasive therapies and surgery. Additionally, alternative options, e.g., different intravesical therapies or cannabinoids, have been evaluated in recent years with promising results. Current available therapies offer different possible treatments for LUT dysfunction in patients with MS. They address either voiding or storage dysfunction and therefore ameliorate LUT symptoms improve quality of life and protect the upper urinary tract.”

Evidence for the use of “medical marijuana” in psychiatric and neurologic disorders.

College of Psychiatric and Neurologic Pharmacists

“Cannabis is listed as a Schedule I substance under the Controlled Substances Act of 1970, meaning the US federal government defines it as an illegal drug that has high potential for abuse and no established medical use; however, half of the states in the nation have enacted “medical marijuana” (MM) laws. Clinicians must be aware of the evidence for and against the use of MM in their patients who may consider using this substance.

RESULTS:

Publications were identified that included patients with dementia, multiple sclerosis, Parkinson disease, Huntington disease, schizophrenia, social anxiety disorder, depression, tobacco use disorder, and neuropathic pain.

DISCUSSION:

There is great variety concerning which medical conditions are approved for treatment with MM for either palliative or therapeutic benefit, depending on the state law. It is important to keep an evidence-based approach in mind, even with substances considered to be illegal under US federal law. Clinicians must weigh risks and benefits of the use of MM in their patients and should ensure that patients have tried other treatment modalities with higher levels of evidence for use when available and appropriate.”

https://www.ncbi.nlm.nih.gov/pubmed/29955495

““Medical marijuana” encompasses everything from whole-plant cannabis to synthetic cannabinoids available for commercial use approved by regulatory agencies. In determining whether MM is of clinical utility to our patients, it is important to keep in mind chemical constituents, dose, delivery, and indication. Selection of the patient appropriate for MM must be carefully considered because clinical guidelines and treatment options with stronger levels of evidence should be exhausted first in most cases. There seems to be strongest evidence for the use of MM in patients with MS and in patients with neuropathic pain; moderate evidence exists to support further research in social anxiety disorder, schizophrenia, PD, and tobacco use disorder; evidence is limited for use in patients with dementia, Huntington disease, depression, and anorexia.”

http://mhc.cpnp.org/doi/10.9740/mhc.2017.01.029?code=cpnp-site

Cannabis: A Prehistoric Remedy for the Deficits of Existing and Emerging Anticancer Therapies

“Cannabis has been used medicinally for centuries and numerous species of this genus are undoubtedly amongst the primeval plant remedies known to humans.

Cannabis sativa in particular is the most reported species, due to its substantial therapeutic implications that are owed to the presence of chemically and pharmacologically diverse cannabinoids.

These compounds have long been used for the palliative treatment of cancer.

Recent advancements in receptor pharmacology research have led to the identification of cannabinoids as effective antitumor agents.

This property is accredited for their ability to induce apoptosis, suppress proliferative cell signalling pathways and promote cell growth inhibition.

Evolving lines of evidence suggest that cannabinoid analogues, as well as their receptor agonists, may offer a novel strategy to treat various forms of cancer.

This review summarizes the historical perspective of C. sativa, its potential mechanism of action, and pharmacokinetic and pharmacodynamic aspects of cannabinoids, with special emphasis on their anticancer potentials.”

http://www.xiahepublishing.com/ArticleFullText.aspx?sid=2&jid=3&id=10.14218%2FJERP.2017.00012

Cannabis products.

“Cannabis products. First row, left to right: Indian, Lebanese, Turkish and Pakistani hashish. Second row, left to right: Swiss hashish, Zairean marijuana, Swiss marijuana, Moroccan hash oil.”

GPR3, GPR6, and GPR12 as novel molecular targets: their biological functions and interaction with cannabidiol.

Image result for APS journal

“The G protein-coupled receptors 3, 6, and 12 (GPR3, GPR6, and GPR12) comprise a family of closely related orphan receptors with no confirmed endogenous ligands. These receptors are constitutively active and capable of signaling through G protein-mediated and non-G protein-mediated mechanisms. These orphan receptors have previously been reported to play important roles in many normal physiological functions and to be involved in a variety of pathological conditions.

Although they are orphans, GPR3, GPR6, and GPR12 are phylogenetically most closely related to the cannabinoid receptors. Using β-arrestin2 recruitment and cAMP accumulation assays, we recently found that the nonpsychoactive phytocannabinoid cannabidiol (CBD) is an inverse agonist for GPR3, GPR6, and GPR12.

This discovery highlights these orphan receptors as potential new molecular targets for CBD, provides novel mechanisms of action, and suggests new therapeutic uses of CBD for illnesses such as Alzheimer’s disease, Parkinson’s disease, cancer, and infertility. Furthermore, identification of CBD as a new inverse agonist for GPR3, GPR6, and GPR12 provides the initial chemical scaffolds upon which potent and efficacious agents acting on these receptors can be developed, with the goal of developing chemical tools for studying these orphan receptors and ultimately new therapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/29941868

https://www.nature.com/articles/s41401-018-0031-9