Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation.

Image result for Phytother Res.

“The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine.

However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components.

Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns.

Furthermore we also critically consider the mounting evidence which suggests non-Δ(9) tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa-induced feeding pattern changes.

Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra-, inter- and extra-cellular mechanisms of action, we demonstrate that non-Δ(9) tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.”

https://www.ncbi.nlm.nih.gov/pubmed/21213357

Therapeutic Use of Cannabis in Inflammatory Bowel Disease.

Logo of gasthep

“The marijuana plant Cannabis sativa and its derivatives, cannabinoids, have grown increasingly popular as a potential therapy for inflammatory bowel disease (IBD). Studies have shown that modulation of the endocannabinoid system, which regulates various functions in the body and has been shown to play a key role in the pathogenesis of IBD, has a therapeutic effect in mouse colitis.

The plant Cannabis sativa has been used in medicinal practice for thousands of years. Anecdotal reports have suggested a therapeutic role for cannabis in the treatment of IBD for hundreds of years. A case report from 1990 describes patients with IBD maintaining remission of disease via cannabis use. Cannabinoids appear to have a clear role in gut pathology and offer a potential target for drug intervention in the treatment of IBD. Cannabis seems to be of symptomatic benefit to patients often refractory to conventional medicines.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193087/

Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity.

Image result for Nat Commun.

“The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.”

Experts’ Perspectives on the Role of Medical Marijuana in Oncology: a semi-structured interview study.

Image result for Psycho Oncology

“Expansion of medical marijuana (MM) laws in the United States may offer oncology new therapeutic options.

This study qualitatively explored professional opinion around the role of MM in cancer care.

Expert opinion was divided between conviction in marijuana’s medicinal potential to guardedness in this assertion, with no participant refuting MM’s utility outright.

Emergent themes included: that MM ameliorates cancer-related pain and nausea and is safer than certain conventional medications.

Participants called for enhanced purity and production standards, and further research on MM’s utility.”

https://www.ncbi.nlm.nih.gov/pubmed/28040884

Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells.

Image result for International Journal of Molecular Sciences

“Mesenchymal stem cells (MSCs) have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD). The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ), and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy.

In this study, we evaluated whether pre-treatment with cannabidiol (CBD), at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs) in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS) platform.

By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs) and control GMSCs (CTR-GMSCs), we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling.

In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630) or for the vanilloid receptor 1 (TRPVI). Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis.

In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.”

https://www.ncbi.nlm.nih.gov/pubmed/28025562

Bidirectional Effects of Cannabidiol on Contextual Fear Memory Extinction

Image result for frontiers in pharmacology

“Cannabidiol (CBD) is the major non-psychotropic constituent of the Cannabis plant and has anxiolytic therapeutic potential.

Cannabidiol (CBD) has been established to have both acute and long-lasting effects to reduce fear memory expression.

We showed that under conditions of strong fear conditioning, CBD reduced contextual fear memory expression both acutely during the extinction session as well as later at a fear retention test.

This pattern of results is consistent with CBD enhancing contextual fear memory extinction when the initial conditioning is strong, but impairing extinction when conditioning is weak. This bidirectional effect of CBD may be related to stress levels induced by conditioning and evoked at retrieval during extinction, rather than the strength of the memory per se.

 In summary, CBD had bidirectional effects on the extinction of contextual fear conditioning, depending on the nature of the initial fear conditioning. Nevertheless, in the more translationally-relevant stronger conditioning setting, CBD both acutely inhibited fear expression and enhanced extinction to produce longer lasting reductions in fear.
These observations provide further support for the potential translational use of CBD in conditions such as posttraumatic stress disorder and specific phobias.”

http://journal.frontiersin.org/article/10.3389/fphar.2016.00493/full?utm_source=S-TWT&utm_medium=SNET&utm_campaign=ECO_FPHAR_XXXXXXXX_auto-dlvrit%0A

Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice.

Image result for cellular physiology and biochemistry

“The endocannabinoid signalling (ECS) system has been known to regulate glucose homeostasis.

Previous studies have suggested that the cannabinoid 2 (CB2) receptor may play a regulatory role on insulin secretion, immune modulation and insulin resistance.

Given that diabetes and insulin resistance are attributable to elevated inflammatory tone, we investigated the role of CB2 receptor on glucose tolerance and insulin sensitivity in high-fat diet (HFD)/streptozotocin (STZ)-induced mice.

Our data suggest a lipolytic role of SER601 in HFD/STZ-induced diabetic mice, which results in significant improvement of systemic insulin sensitivity.

Thus, the CB2 receptor may be considered a promising target for therapeutic development against insulin resistance and obesity-related diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/27960161

Compensatory activation of cannabinoid CB2 receptor inhibition of GABA release in the rostral ventromedial medulla (RVM) in inflammatory pain.

Image result for J Neurosci

“The rostral ventromedial medulla (RVM) is a relay in the descending pain modulatory system and an important site of endocannabinoid modulation of pain.

These studies demonstrate that endocannabinoid signaling to CB1- and CB2-receptors in adult RVM is altered in persistent inflammation.

The emergence of CB2 receptor function in the RVM provides additional rationale for the development of CB2 receptor-selective agonists as useful therapeutics for chronic inflammatory pain.”

https://www.ncbi.nlm.nih.gov/pubmed/27940994

Tamoxifen Isomers and Metabolites Exhibit Distinct Affinity and Activity at Cannabinoid Receptors: Potential Scaffold for Drug Development.

Image result for plos one

“Tamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoidsubtype 1 and 2 receptors (CB1R and CB2Rs).

Collectively, these results suggest that the SERMs Tam, 4OHT and End elicit ER-independent actions via CBRs in an isomer-specific manner.

As such, this novel structural scaffold might be used to develop therapeutically useful drugs for treatment of a variety of diseases mediated via CBRs.”

AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

Image result for plos one

“Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis.

In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus.

Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.”

https://www.ncbi.nlm.nih.gov/pubmed/27936102