The endocannabinoid hydrolysis inhibitor SA-57: Intrinsic antinociceptive effects, augmented morphine-induced antinociception, and attenuated heroin seeking behavior in mice.

Image result for Neuropharmacology.

“Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects.

Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class.

Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects.

Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin.

In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse.”

https://www.ncbi.nlm.nih.gov/pubmed/27890602

Application of carbon nanotubes as the carriers of the cannabinoid, 2-arachidonoylglycerol: Towards a novel treatment strategy in colitis.

Image result for life sciences journal

“Treatment of colitis has remained a major clinical challenge.

The cannabinoid, 2-arachidonoyglycerol (2-AG), has shown beneficial effects in colitis, however, poor solubility or rapid hydrolysis may limit its efficiency. According to the high biocompatibility of carbon nanotubes (CNTs) and their ability for controlled drug delivery, we aimed to prepare multi-walled CNTs-2-AG (MWCNTs-2-AG) complex in order to improve the pharmacological profile of 2-AG and evaluate the therapeutic potential of this nanocomplex in a rat model of colitis.

Aminated MWCNTs and MWCNTs-2-AG complex exhibited significantly lower cytotoxicity than acidified MWCNTs. Once daily intrarectal application of MWCNTs-2-AG complex (containing 2mg/kg of 2-AG) 2days before and 8days after the induction of colitis effectively reduced the macroscopic and microscopic injuries, malondialdehyde, tumour necrosis factor-α, and interlukin-1β concentrations, and myeloperoxidase activity. While, free 2-AG (2mg/kg), and acidified or aminated MWCNTs showed no beneficial effects.

SIGNIFICANCE:

Amino-functionalized MWCNTs appear as the suitable carriers for 2-AG which provide a sustained concentration for this cannabinoid leading to the promising therapeutic effects in the experimental colitis.”

https://www.ncbi.nlm.nih.gov/pubmed/27888115

Endocannabinoid system in sexual motivational processes: is it a novel therapeutic horizon?

Image result for pharmacological research logo

“The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana’s psychoactive ingredient Δ9-tetrahydrocannabinol (Δ9-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors.

For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ9-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment.

In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.”

https://www.ncbi.nlm.nih.gov/pubmed/27884725

“Cannabis As An Aphrodisiac? The Evidence Is Mounting”  https://www.civilized.life/articles/aphrodisiac-evidence-is-mounting/

Allosteric Modulation: An Alternate Approach Targeting the Cannabinoid CB1 Receptor.

Image result for medicinal research reviews

“The cannabinoid CB1 receptor is a G protein coupled receptor and plays an important role in many biological processes and physiological functions.

A variety of CB1 receptor agonists and antagonists, including endocannabinoids, phytocannabinoids, and synthetic cannabinoids, have been discovered or developed over the past 20 years.

In 2005, it was discovered that the CB1 receptor contains allosteric site(s) that can be recognized by small molecules or allosteric modulators.

A number of CB1 receptor allosteric modulators, both positive and negative, have since been reported and importantly, they display pharmacological characteristics that are distinct from those of orthosteric agonists and antagonists.

Given the psychoactive effects commonly associated with CB1 receptor agonists and antagonists/inverse agonists, allosteric modulation may offer an alternate approach to attain potential therapeutic benefits while avoiding inherent side effects of orthosteric ligands.

This review details the complex pharmacological profiles of these allosteric modulators, their structure-activity relationships, and efforts in elucidating binding modes and mechanisms of actions of reported CB1 allosteric modulators.

The ultimate development of CB1 receptor allosteric ligands could potentially lead to improved therapies for CB1-mediated neurological disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/27879006

Cannabidiol Mellows Out Resurgent Sodium Current

“Cannabidiol has received abundant media attention as a potential therapy for intractable epilepsy, based mainly on anecdotal evidence.

These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.”

http://www.epilepsycurrents.org/doi/full/10.5698/1535-7511-16.6.399

High-resolution crystal structure of the human CB1 cannabinoid receptor.

Image result for Nature journal

“The human cannabinoid G-protein-coupled receptors (GPCRs) CB1 and CB2 mediate the functional responses to the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG), as well as the widely consumed plant (phyto)cannabinoid Δ9-tetrahydrocannabinol (THC)1. The cannabinoid receptors have been the targets of intensive drug discovery efforts owing to the therapeutic potential of modulators for controlling pain2, epilepsy3, obesity4, and other maladies. Although much progress has recently been made in understanding the biophysical properties of GPCRs, investigations of the molecular mechanisms of the cannabinoids and their receptors have lacked high-resolution structural data. We used GPCR engineering and lipidic cubic phase (LCP) crystallization to determine the structure of the human CB1 receptor bound to the inhibitor taranabant at 2.6 Å resolution. The extracellular surface of CB1, including the highly conserved membrane-proximal amino-terminal (N-terminal) region, is distinct from other lipid-activated GPCRs and forms a critical part of the ligand binding pocket. Docking studies further demonstrate how this same pocket may accommodate the cannabinoid agonist THC. Our CB1 structure provides an atomic framework for studying cannabinoid receptor function, and will aid the design and optimization of cannabinoid system modulators for therapeutic ends.”

Medical cannabis and mental health: A guided systematic review

Image result for sciencedirect

“This review considers the potential influences of the use of cannabis for therapeutic purposes (CTP) on areas of interest to mental health professionals, with foci on adult psychopathology and assessment. We identified 31 articles relating to the use of CTP and mental health, and 29 review articles on cannabis use and mental health that did not focus on use for therapeutic purposes. Results reflect the prominence of mental health conditions among the reasons for CTP use, and the relative dearth of high-quality evidence related to CTP in this context, thereby highlighting the need for further research into the harms and benefits of medical cannabis relative to other therapeutic options. Preliminary evidence suggests that CTP may have potential for the treatment of PTSD, and as a substitute for problematic use of other substances. Extrapolation from reviews of non-therapeutic cannabis use suggests that the use of CTP may be problematic among individuals with psychotic disorders. The clinical implications of CTP use among individuals with mood disorders are unclear. With regard to assessment, evidence suggests that CTP use does not increase risk of harm to self or others. Acute cannabis intoxication and recent CTP use may result in reversible deficits with the potential to influence cognitive assessment, particularly on tests of short-term memory.

Cannabis use does not appear to increase risk of harm to self or others.”

http://www.sciencedirect.com/science/article/pii/S0272735816300939

“Marijuana could help treat drug addiction, mental health, study suggests”  https://www.sciencedaily.com/releases/2016/11/161116102847.htm

“Marijuana may help combat substance abuse, mental health disorders”  http://www.medicalnewstoday.com/articles/314159.php

“Medical cannabis may help treat mental health problems and opioid addiction”  http://www.news-medical.net/news/20161116/Medical-cannabis-may-help-treat-mental-health-problems-and-opioid-addiction.aspx

PTSD: from neurobiology to pharmacological treatments.

Image result for Eur J Psychotraumatology

“Posttraumatic stress disorder (PTSD) is a chronic debilitating psychiatric disorder characterized by symptoms of re-experience, avoidance, and hyperarousal that can arise immediately or many years after exposure to a traumatic event and injury. Although extensive research has been done over the past 30 years, the etiology of PTSD remains largely unknown. Several neurobiological systems have been implicated in the pathophysiology and vulnerability for developing PTSD; however, first-line pharmacotherapies are limited. Less than 30% achieve full remission, and even then, approved pharmacological treatments often take weeks for therapeutic effect. This article aims to review the pathophysiology of PTSD within multiple neurobiological systems and how these mechanisms are used as pharmacologic targets of treatment, as well as their potential for future targets of intervention.”

Cannabinoids in the Management of Musculoskeletal or Rheumatic Diseases.

Image result for Curr Rheumatol Rep.

“The endocannabinoid system impacts pain and inflammation with potential for therapeutic effect on patients with rheumatic diseases. The current treatment options include the herbal product derived from the plant Cannabis sativa, as well as pharmaceutical preparations. The legalization of medicinal cannabis (marijuana) in many jurisdictions and widespread public advocacy has propelled an interest in use either by prescription or self-medication. In this review, we examine current evidence for efficacy and adverse effects of any cannabinoid product in rheumatic conditions. The evidence to date is scant and precludes making recommendations for the use of cannabinoid preparations in rheumatology patients. In particular, the risks of herbal cannabis in patients are not well defined. Anecdote and advocacy cannot supersede sound evidence.”

https://www.ncbi.nlm.nih.gov/pubmed/27832442

Quantitative analyses of synergistic responses between cannabidiol and DNA-damaging agents on the proliferation and viability of glioblastoma and neural progenitor cells in culture.

Image result for journal of pharmacology and experimental therapeutics

“Evidence suggests that the non-psychotropic cannabis-derived compound, cannabidiol (CBD), has anti-neoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM).

DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM.

Here we studied the anti-proliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures.

This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system (CNS) toxicity.

We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells.

Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells.

Co-treatment regiments combining CBD and DNA-damaging agents produced synergistic anti-proliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs.

Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells.

Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little-to-no therapeutic window when considering NPCs.”

https://www.ncbi.nlm.nih.gov/pubmed/27821713

“Definition of antineoplastic: inhibiting or preventing the growth and spread of tumors or malignant cells”  http://www.merriam-webster.com/dictionary/antineoplastic