Inhibition of Wnt/β-Catenin pathway and Histone acetyltransferase activity by Rimonabant: a therapeutic target for colon cancer.

 

“In a high percentage (≥85%) of both sporadic and familial adenomatous polyposis forms of colorectal cancer (CRC), the inactivation of the APC tumor suppressor gene initiates tumor formation and modulates the Wnt/β-Catenin transduction pathways involved in the control of cell proliferation, adhesion and metastasis.

Increasing evidence showed that the endocannabinoids control tumor growth and progression, both in vitro and in vivo.

We evaluated the effect of Rimonabant, a Cannabinoid Receptor 1 (CB1) inverse agonist, on the Wnt/β-Catenin pathway in HCT116 and SW48 cell lines carrying the genetic profile of metastatic CRC poorly responsive to chemotherapies.

Obtained data heavily supported the rationale for the use of cannabinoids in combined therapies for metastatic CRC harbouring activating mutations of β-Catenin.”

https://www.ncbi.nlm.nih.gov/pubmed/28916833

https://www.nature.com/articles/s41598-017-11688-x

Topical cannabinoids in dermatology.

Image result for cutis journal

“Topical cannabinoids are increasingly utilized by dermatology patients for a range of disorders; however, the acceptance of these over-the-counter products has far outpaced scientific investigation into their safety and efficacy. Here, we review the studies of topical cannabinoids in skin conditions and assess their current place in dermatology practice.”

https://www.ncbi.nlm.nih.gov/pubmed/28873100

“The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757311/

“Cannabinoid system in the skin – a possible target for future therapies in dermatology.” https://www.ncbi.nlm.nih.gov/pubmed/19664006

“Anti-inflammatory cannabinoids for skin diseases”  https://www.endoca.com/blog/discovery/anti-inflammatory-cannabinoids-skin-diseases/

“Topical cannabinoids may help to treat skin diseases”  http://www.medicalnewstoday.com/articles/316968.php

A selective review of medical cannabis in cancer pain management.

“Insufficient management of cancer-associated chronic and neuropathic pain adversely affects patient quality of life. Patients who do not respond well to opioid analgesics, or have severe side effects from the use of traditional analgesics are in need of alternative therapeutic op-tions.

Anecdotal evidence suggests that medical cannabis has potential to effectively manage pain in this patient population.

This review presents a selection of representative clinical studies, from small pilot studies conducted in 1975, to double-blind placebo-controlled trials conducted in 2014 that evaluated the efficacy of cannabinoid-based therapies containing tetrahydrocannabinol (THC) and cannabidiol (CBD) for reducing cancer-associated pain. A review of literature published on Medline between 1975 and 2017 identified five clinical studies that evaluated the effect of THC or CBD on controlling cancer pain, which have been reviewed and summarised.

Five studies that evaluated THC oil capsules, THC:CBD oromucosal spray (nabiximols), or THC oromucosal sprays found some evidence of cancer pain reduction associated with these therapies. A variety of doses ranging from 2.7-43.2 mg/day THC and 0-40 mg/day CBD were administered. Higher doses of THC were correlated with increased pain relief in some studies. One study found that significant pain relief was achieved in doses as low as 2.7-10.8 mg THC in combination with 2.5-10.0 mg CBD, but there was conflicting evidence on whether higher doses provide superior pain relief. Some reported side effects include drowsiness, hypotension, mental clouding, and nausea and vomiting.

There is evidence suggesting that medical cannabis reduces chronic or neu-ropathic pain in advanced cancer patients.

However, the results of many studies lacked statistical power, in some cases due to limited number of study subjects. Therefore, there is a need for the conduct of further double-blind, placebo-controlled clinical trials with large sample sizes in order to establish the optimal dosage and efficacy of different cannabis-based therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28866904

http://apm.amegroups.com/article/view/16199

 

Cannabinoids in Parkinson’s Disease.

Mary Ann Liebert, Inc. publishers

“The endocannabinoid system plays a regulatory role in a number of physiological processes and has been found altered in different pathological conditions, including movement disorders. The interactions between cannabinoids and dopamine in the basal ganglia are remarkably complex and involve both the modulation of other neurotransmitters (γ-aminobutyric acid, glutamate, opioids, peptides) and the activation of different receptors subtypes (cannabinoid receptor type 1 and 2).

In the last years, experimental studies contributed to enrich this scenario reporting interactions between cannabinoids and other receptor systems (transient receptor potential vanilloid type 1 cation channel, adenosine receptors, 5-hydroxytryptamine receptors). The improved knowledge, adding new interpretation on the biochemical interaction between cannabinoids and other signaling pathways, may contribute to develop new pharmacological strategies.

A number of preclinical studies in different experimental Parkinson’s disease (PD) models demonstrated that modulating the cannabinoid system may be useful to treat some motor symptoms. Despite new cannabinoid-based medicines have been proposed for motor and nonmotor symptoms of PD, so far, results from clinical studies are controversial and inconclusive. Further clinical studies involving larger samples of patients, appropriate molecular targets, and specific clinical outcome measures are needed to clarify the effectiveness of cannabinoid-based therapies.”  https://www.ncbi.nlm.nih.gov/pubmed/28861502

“Cannabis is a psychoactive compound widely used along history for recreational and therapeutic purposes. Although many open questions remain, cannabis-based therapies have become increasingly common raising considerable interest in politics as well as in general public for legalization of medical cannabis.”  http://online.liebertpub.com/doi/10.1089/can.2017.0002

Endocannabinoids Have Opposing Effects On Behavioral Responses To Nociceptive And Non-nociceptive Stimuli.

“The endocannabinoid system is thought to modulate nociceptive signaling making it a potential therapeutic target for treating pain.

However, there is evidence that endocannabinoids have both pro- and anti-nociceptive effects. In previous studies using Hirudo verbana (the medicinal leech), endocannabinoids were found to depress nociceptive synapses, but enhance non-nociceptive synapses. Here we examined whether endocannabinoids have similar bidirectional effects on behavioral responses to nociceptive vs. non-nociceptive stimuli in vivo.

These results provide evidence that endocannabinoids can have opposing effects on nociceptive vs. non-nociceptive pathways and suggest that cannabinoid-based therapies may be more appropriate for treating pain disorders in which hyperalgesia and not allodynia is the primary symptom.”

Efficacy, tolerability, and safety of non-pharmacological therapies for chronic pain: An umbrella review on various CAM approaches.

Cover image
“Complementary and alternative medicine (CAM) therapies may be used as a non-pharmacological approach to chronic pain management. Twenty-six reviews (207 clinical trials, >12,000 participants) about 18 CAM modalities, falling under natural products, mind and body practices or other complementary health approaches were included. Inhaled cannabis, graded motor imagery, and Compound Kushen injection (a form of Chinese medicine) were found the most efficient and tolerable for chronic pain relief. When reported, adverse effects related to these CAM were minor.” https://www.ncbi.nlm.nih.gov/pubmed/28669581

The cannabinoid system and pain.

Cover image

“Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28625720

http://www.sciencedirect.com/science/article/pii/S002839081730285X

Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions.

 Image result for Rev Physiol Biochem Pharmacol.

“Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids.

In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment.

For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system.

Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment.

This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/28425013

Cannabinoids as gastrointestinal anti-inflammatory drugs.

Related image

“In this mini-review, we focus on the potential of the endocannabinoid system as a target for novel therapies to treat gastrointestinal (GI) inflammation. We discuss the organization of the endocannabinoid signaling and present possible pharmacological sites in the endocannabinoid system. We also refer to recent clinical findings in the field. Finally, we point at the potential use of cannabinoids at low, non-psychoactive doses to counteract non-inflammatory pathological events in the GI tract, like chemotherapy-induced diarrhea, as evidenced by Abalo et al. in the rat model.”

https://www.ncbi.nlm.nih.gov/pubmed/28239924

Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

Image result for neuropharmacology journal

“Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB1receptor (CB1R)-induced memory deficits through an adenosine A1 receptor-mediated mechanism.

We now evaluated how chronic or acute blockade of adenosine A2A receptors (A2ARs) affects long-term episodic memory deficits induced by a single injection of a selective CB1R agonist.

The finding that CB1R-mediated memory disruption is prevented by antagonism of adenosine A2ARs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB1R drugs is desired.”

https://www.ncbi.nlm.nih.gov/pubmed/28235548