Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome.

“There is a great need for safe and effective therapies for treatment of infantile spasms (IS) and Lennox-Gastaut syndrome (LGS). Based on anecdotal reports and limited experience in an open-label trial, cannabidiol (CBD) has received tremendous attention as a potential treatment for pediatric epilepsy, especially Dravet syndrome.

We sought to document the experiences of children with IS and/or LGS who have been treated with CBD-enriched cannabis preparations.

Perceived efficacy and tolerability were similar across etiologic subgroups.

Eighty-five percent of all parents reported a reduction in seizure frequency, and 14% reported complete seizure freedom.

Reported side effects were far less common during CBD exposure, with the exception of increased appetite (30%).

A high proportion of respondents reported improvement in sleep (53%), alertness (71%), and mood (63%) during CBD therapy… this study suggests a potential role for CBD in the treatment of refractory childhood epilepsy including IS and LGS…”

http://www.ncbi.nlm.nih.gov/pubmed/25935511

“Safety and side effects of cannabidiol, a Cannabis sativa constituent.”  http://www.ncbi.nlm.nih.gov/pubmed/22129319

“Cannabidiol, a safe and non-psychotropic ingredient of the marijuana plant Cannabis sativa…” http://www.ncbi.nlm.nih.gov/pubmed/19690824

http://www.thctotalhealthcare.com/category/epilepsy-2/

Cannabinoids Inhibit T-cells via Cannabinoid Receptor 2 in an in vitro Assay for Graft Rejection, the Mixed Lymphocyte Reaction

Logo of nihpa

 

“Cannabinoids are known to have anti-inflammatory and immunomodulatory properties.

Cannabinoid receptor 2 (CB2) is expressed mainly on leukocytes and is the receptor implicated in mediating many of the effects of cannabinoids on immune processes.

This study tested the capacity of Δ9-tetrahydrocannabinol (Δ9-THC) and of two CB2-selective agonists to inhibit the murine Mixed Lymphocyte Reaction (MLR), an in vitro correlate of graft rejection following skin and organ transplantation. Both CB2-selective agonists and Δ9-THC significantly suppressed the MLR in a dose dependent fashion…

Together, these data support the potential of this class of compounds as useful therapies to prolong graft survival in transplant patients.

Cannabinoids were reported to have effects on immune responses as early as the 1970s, but the basis for this activity was not understood until the cannabinoid receptors were cloned

Ideally, the anatomically disparate expression of CB1 and CB2 would allow for the use of compounds selective for CB2, and thus eliminate the unwanted psychoactive effects from CB1 activation, while maintaining the anti-inflammatory and immunosuppressive properties.

CB2-selective cannabinoids have been proposed as possible candidates to block graft rejection.

The results presented in this paper show that Δ9-THC, a mixed CB1/CB2 agonist, and two CB2-selective agonists can inhibit the Mixed Lymphocyte Reaction (MLR), an in vitro correlate of organ and skin graft rejection.”

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864984/

Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection.

“Parkinson’s disease (PD) is a slow insidious neurological disorder characterized by a loss of dopaminergic neurons in the midbrain. Although several recent preclinical advances have proposed to treat PD, there is hardly any clinically proved new therapeutic for its cure.

Increasing evidence suggests a prominent modulatory function of the cannabinoid signaling system in the basal ganglia. Hence, use of cannabinoids as a new therapeutic target has been recommended as a promising therapy for PD.

The elements of the endocannabinoid system are highly expressed in the neural circuit of basal ganglia wherein they bidirectionally interact with dopaminergic, glutamatergic, and GABAergic signaling systems.

As the cannabinoid signaling system undergoes a biphasic pattern of change during progression of PD, it explains the motor inhibition typically observed in patients with PD.

Cannabinoid agonists such as WIN-55,212-2 have been demonstrated experimentally as neuroprotective agents in PD, with respect to their ability to suppress excitotoxicity, glial activation, and oxidative injury that causes degeneration of dopaminergic neurons.

Additional benefits provided by cannabinoid related compounds including CE-178253, oleoylethanolamide, nabilone and HU-210 have been reported to possess efficacy against bradykinesia and levodopa-induced dyskinesia in PD.

Despite promising preclinical studies for PD, use of cannabinoids has not been studied extensively at the clinical level. In this review, we reassess the existing evidence suggesting involvement of the endocannabinoid system in the cause, symptomatology, and treatment of PD. We will try to identify future threads of research that will help in the understanding of the potential therapeutic benefits of the cannabinoid system for treating PD.”

http://www.ncbi.nlm.nih.gov/pubmed/25888232

“To conclude, development of safe, effective cannabis-based medicines targeting different mechanisms may have a significant impact in PD therapy.”

Full-text: http://www.molecularneurodegeneration.com/content/10/1/17

http://www.thctotalhealthcare.com/category/parkinsons-disease/

Endocannabinoid System

Wiley

“The endocannabinoid system (ECS) is defined as the signalling system composed of: (1) the two G‐protein‐coupled receptors known as cannabinoid receptors of type‐1 and ‐2 (CB1 and CB2); (2) the two most studied endogenous agonists of such receptors, the endocannabinoids anandamide (N‐arachidonoyl‐ethanolamine) and 2‐AG (2‐arachidonoyl‐glycerol); (3) enzymes and other proteins regulating the tissue levels of endocannabinoids; and (4) enzymes and other proteins that, together with endocannabinoids, regulate the activity of cannabinoid receptors.

A key role of the ECS is emerging in the control not only of central and peripheral nervous system functions, but also of most aspects of mammalian physiology, including energy intake, processing and storage, the immune response, reproduction and cell fate.

The ECS is also subject to dysregulation, and this seems to contribute to the symptoms and progress of several diseases. Hence, the possibility of developing new therapies starting from our increasing knowledge of the ECS is discussed.”

http://www.els.net/WileyCDA/ElsArticle/refId-a0023403.html

http://www.thctotalhealthcare.com/category/endocannabinoid-system/

The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs-A practical view.

“The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover.

Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling.

In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view.

It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone.

Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of “cannabis-like” behaviours.”

http://www.ncbi.nlm.nih.gov/pubmed/25791296

Molecular Mechanisms of Cannabinoid Protection from Neuronal Excitotoxicity

“Cannabinoids protect neurons from excitotoxic injury…

Endogenous or exogenous cannabinoids have shown neuroprotective effects…

The main finding reported here is that cannabinoids protect neurons from excitotoxic injury by a mechanism that involves the activation of CB1R and inhibition of NOS and PKA….

Cannabinoid receptor agonist drugs protect neurons…

By identifying the signaling pathways responsible for cannabinoid effects in animal models of disease and their human counterparts, it may be possible to design more specific and therefore more efficacious cannabinoid-based therapies.”

http://molpharm.aspetjournals.org/content/69/3/691.long

Delta9-tetrahydrocannabinol protects hippocampal neurons from excitotoxicity. http://www.ncbi.nlm.nih.gov/pubmed/17140550

Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies.

“The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins).

The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2.

These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction.

Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry.

A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.”

http://www.ncbi.nlm.nih.gov/pubmed/25698968

Proapoptotic effect of endocannabinoids in prostate cancer cells.

“Recent evidence shows that derivatives of Cannabis sativa and its analogs may exert a protective effect against different types of oncologic pathologies.

The purpose of the present study was to detect the presence of cannabinoid receptors (CB1 and CB2) on cancer cells with a prostatic origin and to evaluate the effect of the in vitro use of synthetic analogs…

Based on these results, we suggest that endocannabinoids may be a beneficial option for the treatment of prostate cancer that has become nonresponsive to common therapies.”

http://www.ncbi.nlm.nih.gov/pubmed/25606819

http://www.thctotalhealthcare.com/category/prostate-cancer/

Smoking Marijuana Relieves Symptoms of Multiple Sclerosis in Patients, with Minor Cognitive Effects

marijuana

“Smoking marijuana has been shown to relieve muscle tightness, called spasticity, and painful symptoms in patients with multiple sclerosis, who have been resistant to conventional MS therapies, according to a new study.

“We found that smoked cannabis was superior to placebo in reducing symptoms and pain in patients with treatment-resistant spasticity, or excessive muscle contractions,” Researcher Dr. Jody Corey-Bloom, director of the University of California, San Diego Multiple Sclerosis Center said in a journal news release.”

http://www.medicaldaily.com/smoking-marijuana-relieves-symptoms-multiple-sclerosis-patients-minor-cognitive-effects-240433

“Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394820/

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

More Evidence Pot Treats Auto-Immune Diseases

“Researchers at the University of South Carolina have another clue as to why patients with auto-immune diseases like multiple sclerosis, psoriasis, rheumatoid arthritisCrohn’s and celiac disease sometimes respond to medical marijuana therapies, according to Science World Reports.

The main active ingredient in pot, THC, regulates gene expression in immune cells, effectively switching off runaway inflammation at the DNA level.

The researchers used mice cells in vivo and the results suggest that “THC activates the expression of a subset of genes while suppressing the expression of another subset of genes.” The net result is less inflammatory response, which can severely damage and kill cells.

Autoimmune diseases involve an abnormal immune response of the body, causing immune cells to attack healthy cells instead of pathogens. Autoimmune diseases — a collection of about 80 diseases — are the 10th leading cause of death of women in all age groups up to 65 years old.

Despite the safety and efficacy of medical cannabis, providers remain under attack across America. California senators Barbara Boxer and Dianne Feinstein currently support the war on pot patients and providers. The Drug Policy Alliance has started a new campaign today to help citizens lobby Senators to defund the war on medical marijuana.”

http://www.eastbayexpress.com/LegalizationNation/archives/2014/06/03/more-evidence-pot-treats-auto-immune-diseases