Increased Severity of Stroke in CB1 Cannabinoid Receptor Knock-Out Mice

“These findings indicate that endogenous cannabinoid signaling pathways protect mice from ischemic stroke by a mechanism that involves CB1 receptors, and suggest that both blood vessels and neurons may be targets of this protective effect.

 Endogenous cannabinoid signaling pathways have been implicated in protection of the brain from hypoxia, ischemia, and trauma…

Cannabinoids, which include the marijuana constituent Δ9-tetrahydrocannabinol and endogenous cannabinoids (endocannabinoids) produced in the brain, exert many of their effects through the G-protein-coupled CB1 receptor.

Cannabinoids reduce neuronal death from a variety of insults, including excitotoxicity, oxidative stress, hypoxia, ischemic stroke and trauma…

Clinical stroke, which usually results from cerebral ischemia, is a common and frequently incapacitating problem for which satisfactory treatment is generally unavailable. Identifying new endogenous systems that mitigate ischemic brain injury through effects on neurons, blood vessels, or both (such as the endocannabinoid signaling pathway) may help to guide the search for improved therapies.”

Full text: http://www.jneurosci.org/content/22/22/9771.long

Inhibition of basal and ultraviolet B-induced melanogenesis by cannabinoid CB(1) receptors: a keratinocyte-dependent effect.

“Ultraviolet radiation is the major environmental insult to the skin and stimulates the synthesis of melanin in melanocytes, which then distribute it to the neighboring keratinocytes where it confers photo-protection. Skin color results from the paracrine interaction between these two cell types. Recent studies suggest that endocannabinoids are potential mediators in the skin. Here, we investigated whether cannabinoid drugs play a role in melanogenesis and if ultraviolet radiation modifies the cutaneous endocannabinoid system.

We provide evidence that human melanoma cells (SK-mel-1) express CB(1) receptors… 

Furthermore, ultraviolet-B radiation increased endocannabinoids levels only in keratinocytes, whereas CB(1) cannabinoid receptor expression was up-regulated only in melanoma cells.

Our results collectively suggest that ultraviolet radiation activates paracrine CB(1)-mediated endocannabinoid signaling to negatively regulate melanin synthesis.

The endocannabinoid system in the skin may be a possible target for future therapies in pigmentary disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21298280

Experience with the synthetic cannabinoid nabilone in chronic noncancer pain.

“Chronic noncancer pain includes a heterogeneous group of disorders and is often refractory to treatment. Cannabis products have historically been used for chronic pain and are attracting renewed pharmaceutical interest. Nabilone is a synthetic cannabinoid licensed in Canada for the treatment of severe nausea and vomiting associated with cancer chemotherapy. We have used nabilone off-label for the treatment of chronic noncancer pain since 1999. In this article, we review our clinical experience of 20 adult patients with chronic noncancer pain who had been treated with nabilone and followed up for an average of 1.5 years. Prior to nabilone therapy, patients had used a wide range of therapies, including 11 who had used cannabis. Fifteen patients reported subjective overall improvement with nabilone, and nine reported reduced pain intensity. Beneficial effects on sleep and nausea were the main reasons for continuing use. Intolerable side effects were experienced in three patients (palpitations, urinary retention, dry mouth). Nabilone may be a useful addition to pain management and should be further evaluated in randomized controlled trials.”

http://www.ncbi.nlm.nih.gov/pubmed/16533193

Cannabidiol enhances consolidation of explicit fear extinction in humans.

“Whilst Cannabidiol (CBD), a non-psychotomimetic cannabinoid, has been shown to enhance extinction learning in rats, its effects on fear memory in humans have not previously been studied. These findings provide the first evidence that CBD can enhance consolidation of extinction learning in humans and suggest that CBD may have potential as an adjunct to extinction-based therapies for anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23307069

CB(2) receptor and amyloid pathology in frontal cortex of Alzheimer’s disease patients.

“The cannabinoid system seems to play an important role in various neurodegenerative diseases including Alzheimer’s disease (AD). The relationship of cannabinoid receptors (CB(1)R and CB(2)R) to cognitive function and neuropathological markers in AD remains unclear. In the present study, postmortem cortical brain tissues (Brodmann area 10) from a cohort of neuropathologically confirmed AD patients and age-matched controls were used to measure CB(1)R and CB(2)R by immunoblotting. Correlational analyses were performed for the neurochemical and cognitive data. CB(1)R expression was significantly decreased in AD. Levels of CB(1)R correlated with hypophagia, but not with any AD molecular marker or cognitive status (Mini Mental State Examination score). The level of CB(2)R was significantly higher (40%) in AD. Increases in the expression of the glial marker glial fibrillar acidic protein were also found. CB(2)R expression did not correlate with cognitive status. Interestingly, expression levels of CB(2)R correlated with two relevant AD molecular markers, Aβ(42) levels and senile plaque score.

These results may constitute the basis of CB(2)R-based therapies and/or diagnostic approaches.”

http://www.ncbi.nlm.nih.gov/pubmed/22763024

Cannabinoid CB2 receptors in human brain inflammation.

“CB2 receptors in neuroinflammatory conditions of the human brain.

“CB2 receptors have been found to be present in the CNS, thus offering new opportunities for the pharmacological use of cannabinoid agents. Furthermore, the fact that their expression is increased by inflammatory stimuli suggests that they may be involved in the pathogenesis and/or in the endogenous response to injury. Data obtained in vitro and in animal models show that CB2 receptors may be part of the general neuroprotective action of the ECS…

The anti-inflammatory effects triggered by the activation of the CB2 receptor make it an attractive target for the development of novel anti-inflammatory therapies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219537/

Therapeutic effects of Delta9-THC and modafinil in a marmoset Parkinson model.

Abstract

“Current therapies for Parkinson’s disease (PD) like l-dopa and dopamine (DA) agonists have declined efficacy after long term use. Therefore, research towards supplementary or alternative medication is needed. The implementation in PD can be expedited by application of compounds already used in the clinic. In this study the therapeutic effects of the psychoactive compounds Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and modafinil were tested in the 1-methyl-1,2,3,6-tetrahydropyridine (MPTP)-marmoset model for PD. The anti-parkinson effects of Delta(9)-THC (4 mg/kg) and modafinil (100 mg/kg) in parkinsonian marmosets were assessed with two behavioral rating scales covering parkinsonian symptoms and involuntary movements and two test systems assessing the locomotor activity and hand-eye coordination. Delta(9)-THC improved activity and hand-eye coordination, but induced compound-related side-effects. Modafinil improved activity and observed parkinsonian symptoms but not hand-eye coordination. It can be concluded that both compounds have therapeutic values and could supplement existing therapies for PD.”

http://www.ncbi.nlm.nih.gov/pubmed/18222654

Cannabinoids and Parkinson’s disease.

Abstract

“Cannabinoid-based medicines have been proposed as clinically promising therapies in Parkinson’s disease (PD), given the prominent modulatory function played by the cannabinoid signaling system in the basal ganglia. Supporting this pharmacological potential, the cannabinoid signaling system experiences a biphasic pattern of changes during the progression of PD. Thus, early and presymptomatic stages, characterized by neuronal malfunctioning but little evidence of neuronal death, are associated with desensitization/downregulation of CB(1) receptors. It was proposed that these losses may be part of the pathogenesis itself, since they can aggravate different cytotoxic insults which are controlled in part by cannabinoid signals, mainly excitotoxicity but also oxidative stress and glial activation. By contrast, intermediate and, in particular, advanced stages of parkinsonism characterized by a profound nigral degeneration and occurrence of major parkinsonian symptoms (e.g. bradykinesia), are associated with upregulatory responses of CB(1) receptors, possibly CB(2) receptors too, and the endocannabinoid ligands for both receptor types. This would explain the motor inhibition typical of this disease and the potential proposed for CB(1) receptor antagonists in attenuating the bradykinesia typical of PD. In addition, certain cannabinoid agonists have been proposed to serve as neuroprotective molecules in PD, given their well-demonstrated capability to reduce excitotoxicity, calcium influx, glial activation and, in particular, oxidative injury that cooperatively contribute to the degeneration of nigral neurons. However, the potential of cannabinoid-based medicines in PD have been still scarcely studied at the clinical level despite the existence of solid and promising preclinical evidence. Considering the relevance of these preclinical data, the need for finding treatments for motor symptoms that may be alternative to classic dopaminergic replacement therapy, and the lack of efficient neuroprotective strategies in PD, we believe it is of major interest to develop further studies that allow the promising expectations generated for these molecules to progress from the present preclinical evidence towards a real clinical application.”

http://www.ncbi.nlm.nih.gov/pubmed/19839934

Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson’s disease in the rat.

Abstract

“The endocannabinoid system is emerging as a potential alternative to the dopaminergic system for the treatment of Parkinson’s disease. Like all emerging targets, validation of this system’s potential for treating human Parkinsonism necessitates testing in animal models of the condition. However, if components of the endocannabinoid system are altered by the induction of a Parkinsonian state in animal models, this could have an impact on the interpretation of such preclinical experiments. This study sought to determine if expression of the CB(1) subtype of cannabinoid receptor is altered in the two most commonly used rat models of Parkinson’s disease. Parkinsonian lesions were induced by stereotaxic injection of 6-hydroxydopamine into the axons (medial forebrain bundle) or terminals (striatum) of the nigrostriatal pathway. On days 1, 3, 7, 14 and 28 post-lesion, rats were sacrificed and brains were processed for tyrosine hydroxylase and CB(1) receptor immunohistochemistry. The CB(1) receptor was expressed strongly in the substantia nigra pars reticulata, minimally overlapping with tyrosine hydroxylase immunoreactivity in the pars compacta. Interestingly, while there was little change in CB(1) receptor expression following axonal lesion, expression of the receptor was significantly reduced following terminal lesion. Loss of CB(1) receptor expression in the pars reticulata correlated significantly with the loss of striatal and nigral volume after terminal lesion indicating this may have been due to 6-hydroxydopamine-induced non-specific damage of striatonigral neurons which are known to express CB(1) receptors. Thus, this result has implications for the choice of model and interpretation of studies used to investigate potential cannabinoid-based therapies for Parkinson’s disease as well as striatonigral diseases such as Huntington’s disease and Multiple Systems Atrophy.”

http://www.ncbi.nlm.nih.gov/pubmed/20097273

Antitumor Effects of Cannabidiol, a Nonpsychoactive Cannabinoid, on Human Glioma Cell Lines

“Marijuana and its derivatives have been used in medicine for many centuries, and currently there is a renewed interest in the study of the therapeutic effects of cannabinoids…”

“Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines…”

“…the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.”

“In conclusion, a cannabinoid-based therapeutic strategy for neural diseases devoid of undesired psychotropic side effects could find in CBD a valuable compound in cancer therapies along with the perspective of evaluating a synergistic effect with other cannabinoid molecules and/or with other chemotherapeutic agents as well as with radiotherapy. Whatever the precise mechanism underlying the CBD effects, the present results suggest a possible application of CBD as a promising, nonpsychoactive, antineoplastic agent.”

http://jpet.aspetjournals.org/content/308/3/838.full