Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments.

Image result for frontiers in cardiovascular medicine“Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic.

Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory.

Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol.

We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/32039239

https://www.frontiersin.org/articles/10.3389/fcvm.2019.00194/full

“Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.”  https://www.ncbi.nlm.nih.gov/pubmed/25569804

The Highs and Lows of Cannabis in Cancer Treatment and Bone Marrow Transplantation.

 Logo of rmmj“In the last decade, we have observed an increased public and scientific interest in the clinical applications of medical cannabis.

Currently, the application of cannabinoids in cancer patients is mainly due to their analgesic and anti-emetic effects.

The direct effects of phyto-cannabinoids on cancer cells are under intensive research, and the data remain somewhat inconsistent. Although anti-proliferative properties were observed in vitro, conclusive data from animal models and clinical trials are lacking.

Since immunotherapy of malignant diseases and bone marrow transplantation are integral approaches in hemato-oncology, the immuno-modulatory characteristic of cannabinoids is a fundamental aspect for consideration. The effect of cannabinoids on the immune system is presently under investigation, and some evidence for its immuno-regulatory properties has been shown.

In addition, the interaction of cannabinoids and classical cytotoxic agents is a subject for further investigation. Here we discuss the current knowledge of cannabinoid-based treatments in preclinical models and the limited data in oncological patients. Particularly, we address the possible contradiction between the direct anti-tumor and the immune-modulatory effects of cannabinoids.

Better understanding of the mechanism of cannabinoids influence is essential to design therapies that will allow cannabinoids to be incorporated into the clinic.”

https://www.ncbi.nlm.nih.gov/pubmed/32017682

Uncovering the hidden antibiotic potential of Cannabis.

 Go to Volume 0, Issue ja“The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating exploration of alternative therapies.

Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated.

Here, we show that cannabinoids exhibit antibacterial activity against MRSA, inhibit its ability to form biofilms and eradicate pre-formed biofilms and stationary phase cells persistent to antibiotics.

We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA.

We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane.

Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multi-drug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/32017534

https://pubs.acs.org/doi/10.1021/acsinfecdis.9b00419

Impact of Cannabinoids on Symptoms of Refractory Gastroparesis: A Single-center Experience.

“Cannabinoids are increasingly used for medicinal purposes, including neuropathy.

Gastroparesis is a neuromuscular disorder and neuropathy plays a large role in its pathogenesis. It is thus reasonable that cannabinoids can serve a beneficial role in the management of gastroparesis.

Our study evaluates the effect of cannabinoids on gastroparesis symptoms.

A significant improvement in the GCSI total symptom composite score was seen with either cannabinoid treatment (mean score difference of 12.8, 95% confidence interval 10.4-15.2; p-value < 0. 001). Patients prescribed marijuana experienced a statistically significant improvement in every GCSI symptom subgroup. Significant improvement in abdominal pain score was also seen with either cannabinoid treatment (mean score difference of 1.6; p-value <0.001).

Conclusions: Cannabinoids dramatically improve the symptoms of gastroparesis. Furthermore, an improvement in abdominal pain with cannabinoids represents a breakthrough for gastroparesis-associated abdominal pain treatment, for which there are currently no validated therapies.”

https://www.ncbi.nlm.nih.gov/pubmed/31993268

“In conclusion, cannabinoids dramatically improve refractory gastroparesis symptoms, including abdominal pain. Marijuana may be superior to dronabinol in improving these symptoms, though both cannabinoids seem to be promising as novel therapeutic options in gastroparesis.”

https://www.cureus.com/articles/25832-impact-of-cannabinoids-on-symptoms-of-refractory-gastroparesis-a-single-center-experience

Cannabis for Pediatric Epilepsy.

 Related image“Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. Up to 30% of children with epilepsy will be refractory to standard anticonvulsant therapy, and those with epileptic encephalopathy can be particularly challenging to treat.

The endocannabinoid system can modulate the physiologic processes underlying epileptogenesis. The anticonvulsant properties of several cannabinoids, namely Δ-tetrahydrocannabinol and cannabidiol (CBD), have been demonstrated in both in vitro and in vivo studies.

Cannabis-based therapies have been used for millennia to treat a variety of diseases including epilepsy. Several studies have shown that CBD, both in isolation as a pharmaceutical-grade preparation or as part of a CBD-enriched cannabis herbal extract, is beneficial in decreasing seizure frequency in children with treatment-resistant epilepsy.

Overall, cannabis herbal extracts appear to provide greater efficacy in decreasing seizure frequency, but the studies assessing cannabis herbal extract are either retrospective or small-scale observational studies. The two large randomized controlled studies assessing the efficacy of pharmaceutical-grade CBD in children with Dravet and Lennox-Gastaut syndromes showed similar efficacy to other anticonvulsants. Lack of data regarding appropriate dosing and pediatric pharmacokinetics continues to make authorization of cannabis-based therapies to children with treatment-resistant epilepsy challenging.”

https://www.ncbi.nlm.nih.gov/pubmed/31895184

https://insights.ovid.com/crossref?an=00004691-202001000-00002

Pharmacists and the future of cannabis medicine.

“To summarize the history and evolution of cannabis use and policies and to review current therapeutic uses, safety, and the central role pharmacists can play.

SUMMARY:

Cannabis regulation and use have evolved over the centuries and are becoming more widely accepted, with over two-thirds of states in the United States having an approved cannabis program. However, changing policy and a paucity of controlled clinical trials has led to questions on the safety and effectiveness of cannabinoid therapies. Although there are conditions for which cannabinoids may be helpful, potential contraindications, adverse effects, and drug-drug interactions should be taken into account.

CONCLUSION:

Pharmacists are in a unique position based on their accessibility, knowledge, and skills to guide product selection, dosing, and discuss drug interactions and adverse effects to educate patients on safe cannabis use, whether it be delta-9-tetrahydrocannabinol, cannabidiol, or a combination thereof. Pharmacists and pharmacy organizations, moreover, should advocate for an integral role in the medical cannabis movement to ensure patient safety and evaluate cannabinoid pharmacology, pharmacokinetics, drug-drug interactions, safety, and efficacy through rigorous investigations.”

https://www.ncbi.nlm.nih.gov/pubmed/31870860

https://www.japha.org/article/S1544-3191(19)30513-8/fulltext

The Interplay between the Endocannabinoid System, Epilepsy and Cannabinoids.

ijms-logo“Epilepsy is a neurological disorder that affects approximately 50 million people worldwide.

There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown.

Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies.

We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment.

There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.”

https://www.ncbi.nlm.nih.gov/pubmed/31810321

https://www.mdpi.com/1422-0067/20/23/6079

The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities.

“Peripheral neuropathy can significantly impact the quality of life for those who are affected, as therapies from the current treatment algorithm often fail to deliver adequate symptom relief. There has, however, been an increasing body of evidence for the use of cannabinoids in the treatment of chronic, noncancer pain. The efficacy of a topically delivered cannabidiol (CBD) oil in the management of neuropathic pain was examined in this four-week, randomized and placebo-controlled trial.

RESULTS:

The study population included 62.1% males and 37.9% females with a mean age of 68 years. There was a statistically significant reduction in intense pain, sharp pain, cold and itchy sensations in the CBD group when compared to the placebo group. No adverse events were reported in this study.

CONCLUSIONS:

Our findings demonstrate that the transdermal application of CBD oil can achieve significant improvement in pain and other disturbing sensations in patients with peripheral neuropathy. The treatment product was well tolerated and may provide a more effective alternative compared to other current therapies in the treatment of peripheral neuropathy.”

https://www.ncbi.nlm.nih.gov/pubmed/31793418

http://www.eurekaselect.com/177080/article

Does Integrative Medicine Reduce Prescribed Opioid Use for Chronic Pain? A Systematic Literature Review.

Image result for pain medicine journal“Chronic pain (CP) is a major public health problem. Many patients with CP are increasingly prescribed opioids, which has led to an opioid crisis.

Integrative medicine (IM), which combines pharmacological and complementary and alternative medicine (CAM), has been proposed as an opioid alternative for CP treatment.

The majority of the studies showed that opioid use was reduced significantly after using IM. Cannabinoids were among the most commonly investigated approaches in reducing opioid use, followed by multidisciplinary approaches, cognitive-behavioral therapy, and acupuncture. The majority of the studies had limitations related to sample size, duration, and study design.

CONCLUSIONS:

There is a small but defined body of literature demonstrating positive preliminary evidence that the IM approach including CAM therapies can help in reducing opioid use. As the opioid crisis continues to grow, it is vital that clinicians and patients be adequately informed regarding the evidence and opportunities for IM/CAM therapies for CP.”

https://www.ncbi.nlm.nih.gov/pubmed/31755962

https://academic.oup.com/painmedicine/advance-article-abstract/doi/10.1093/pm/pnz291/5637803?redirectedFrom=fulltext

Potential new therapies against a toxic relationship: neuroinflammation and Parkinson’s disease.

 Image result for ovid journal“Parkinson’s disease (PD) is a neurodegenerative disorder classically associated with motor symptoms, but several nonmotor disturbances appear decades before the clinical diagnosis of the disease.

A variety of hypotheses exist to explain the onset of PD, and neuroinflammation is one of the most investigated processes. In fact, strong evidence suggests that PD begins with an inflammatory process; currently, however, no anti-inflammatory therapy is clinically employed to alleviate the typical motor and the prodromal disturbances such as olfactory loss, cognitive impairments, depression and anxiety, sleep disturbances, and autonomic disorders.

In fact, the classical dopaminergic therapies are not effective in alleviating these symptoms and there is no other specific therapy for these outcomes. Therefore, in this review, we will discuss novel potential pharmacological therapeutic strategies focusing on cannabinoids, caffeine, melatonin, and dietary compounds, which could act as adjuvants to regular PD therapy.

These described chemicals have been extensively investigated as anti-inflammatory agents possibly promoting beneficial effects on nonmotor symptoms of PD. The investigation of the inflammatory process at different stages of PD progression should give us a better view of the therapeutic scenario and could improve our understanding of the mechanisms of this disease.”

https://www.ncbi.nlm.nih.gov/pubmed/31703030

https://insights.ovid.com/crossref?an=00008877-201912000-00008