delta 9-tetrahydrocannabinol in clinical oncology.

“After anecdotal reports of marijuana’s providing antiemetic activity in cancer chemotherapy patients refractory to standard agents, orally administereddelta 9-tetrahydrocannabinol (THC) was formally studied by a number of investigators.

In six of seven well-controlled studies, orally administered THC was a superior antiemetic agent compared with control agents.

Overall, the benefits of orally administered THC use represent a major advance in antiemetic therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/6262541

http://www.thctotalhealthcare.com/category/cancer/

Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity

“In glaucoma, the increased release of glutamate is the major cause of retinal ganglion cell death. Cannabinoids have been demonstrated to protect neuron cultures from glutamate-induced death.

In this study, we test the hypothesis that glutamate causes apoptosis of retinal neurons via the excessive formation of peroxynitrite, and that the neuroprotective effect of the psychotropic Δ9-tetrahydroxycannabinol (THC) or nonpsychotropic cannabidiol (CBD) is via the attenuation of this formation…

The neuroprotection by THC and CBD was because of attenuation of peroxynitrite.

The effect of THC was in part mediated by the cannabinoid receptor CB1.

These results suggest the potential use of CBD as a novel topical therapy for the treatment of glaucoma.

THC and CBD, are similarly potent antioxidants that protect neuron cultures from glutamate-induced cell death or oxidative stress…

In addition to possessing neuroprotective or retinal neuroprotective activity… cannabinoids, such as THC, have been demonstrated to induce dose-related reductions in intraocular pressure in human and in animal models. 

This suggests that cannabinoids may offer a multifaceted therapy for glaucoma.

In conclusion, our results indicate that lipid peroxidation and ONOO− formation play an important role in NMDA-induced retinal neurotoxicity and cell loss in the retina, and that THC and CBD, by reducing the formation of these compounds, are effective neuroprotectants.

The present studies could form the basis for the development of new topical therapies for the treatment of glaucoma.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892413/

http://www.thctotalhealthcare.com/category/glaucoma-2/

A systematic review of the antipsychotic properties of cannabidiol in humans.

“Despite extensive study over the past decades, available treatments for schizophrenia are only modestly effective and cause serious metabolic and neurological side effects. Therefore, there is an urgent need for novel therapeutic targets for the treatment of schizophrenia.

A highly promising new pharmacological target in the context of schizophrenia is the endocannabinoid system…

the non-psychotropic, plant-derived cannabinoid agent cannabidiol (CBD) may have antipsychotic properties, and thus may be a promising new agent in the treatment of schizophrenia.

Here we review studies that investigated the antipsychotic properties of CBD in human subjects.

Results show the ability of CBD to counteract psychotic symptoms and cognitive impairment associated with cannabis use as well as with acute THC administration.

In addition, CBD may lower the risk for developing psychosis that is related to cannabis use.

These effects are possibly mediated by opposite effects of CBD and THC on brain activity patterns in key regions implicated in the pathophysiology of schizophrenia, such as the striatum, hippocampus and prefrontal cortex.

The first small-scale clinical studies with CBD treatment of patients with psychotic symptoms further confirm the potential of CBD as an effective, safe and well-tolerated antipsychotic compound, although large randomised clinical trials will be needed before this novel therapy can be introduced into clinical practice.”

http://www.ncbi.nlm.nih.gov/pubmed/25667194

http://www.thctotalhealthcare.com/category/schizophrenia/

Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model.

“Germinal matrix hemorrhage (GMH) is one of the most common and devastating cerebrovascular events that affect premature infants, resulting in a significant socioeconomic burden. However, GMH has been largely unpreventable, and clinical treatments are mostly inadequate.

In the present study, we tested the hypothesis that a selective CB2 receptor agonist, could attenuate brain injury and neurological deficits…

This current study suggests a potential clinical utility for CB2R agonists as a potential therapy to reduce neurological injury and improve patient outcomes after GMH.”

http://www.ncbi.nlm.nih.gov/pubmed/25625355

Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of Cerebral Malaria.

Neuroscience

“Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparuminfection that might cause permanent neurological deficits.

Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties.

In the present work, we evaluated the effects of CBD in a murine model of CM.

CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6).

Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease.”

http://www.ncbi.nlm.nih.gov/pubmed/25595981

“Cannabidiol adjuvant treatment increases survival in the murine model of CM. Cannabidiol adjuvant treatment promotes rescue of behavioral and cognitive function.”

https://www.sciencedirect.com/science/article/pii/S0306452215000196

http://www.thctotalhealthcare.com/category/malaria/

Perturbations of the endocannabinoid system in mantle cell lymphoma: correlations to clinical and pathological features.

“The cannabinoid receptors are upregulated in many types of cancers, including mantle cell lymphoma (MCL) and have been suggested to constitute novel therapeutic targets.

…  the relative expression of the anandamide synthesizing and metabolizing enzymes in MCL is heavily perturbed.

This finding, together with high expression of cannabinoid receptors, could favor enhanced anandamide signaling and suggest that targeting the endocannabinoid system might be considered as part of lymphoma therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/25594062

“We have previously shown that exposure of MCL cells to cannabinoids induces cell death in vitro and reduces tumor growth in xenograft mouse models… cancer tissues express higher levels of cannabinoid receptors than the non-malignant counterparts and the endocannabinoid system is therefore considered as a potential novel therapeutic target in cancer therapy.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278325/

http://www.thctotalhealthcare.com/category/lymphoma/

Advances in the management of multiple sclerosis spasticity: recent clinical trials.

“Most patients with multiple sclerosis (MS) experience spasticity as the clinical course evolves. Associated symptoms include (often painful) spasms, urinary dysfunction and sleep disturbances. THC:CBD oromucosal spray (Sativex®) is approved for symptom improvement in adult patients with moderate to severe MS-related spasticity who have not responded adequately to other antispasticity medication and who demonstrate clinically significant improvement in spasticity-related symptoms during an initial trial of therapy.

SUMMARY:

In pivotal clinical trials of THC:CBD oromucosal spray, a meaningful proportion of patients with treatment-resistant MS spasticity achieved clinically relevant improvement with active treatment versus placebo. The utility of a 4-week trial of therapy to identify patients who respond to treatment was demonstrated in an enriched-design study.

THC:CBD oromucosal spray was well tolerated in these studies, with no evidence of effects typically associated with recreational cannabis use.

In a subsequent post approval clinical trial, THC:CBD oromucosal spray had no statistically significant effect on cognition and mood compared with placebo.

Moreover, after 50 weeks’ treatment, approximately two-thirds of patients, physicians and caregivers reported improvement from baseline in spasticity based on global impressions of change.

In phase III clinical trials, approximately one-third of MS patients with treatment-resistant spasticity had a clinically relevant and statistically significant response to THC:CBD oromucosal spray.

In addition to a reduction in spasticity, responders experienced meaningful relief from associated symptoms.

THC:CBD oromucosal spray was generally well tolerated and efficacy was maintained over the longer term.

A post-approval clinical trial indicated no effect of THC:CBD oromucosal spray on cognition or mood after 50 weeks of use.”

http://www.ncbi.nlm.nih.gov/pubmed/25278117

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/

Neuroprotective Properties of Cannabigerol in Huntington’s Disease: Studies in R6/2 Mice and 3-Nitropropionate-lesioned Mice.

“Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington’s disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms.

Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD.

CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity.

In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP.

We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice.

Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment.

We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals.

In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.”

http://www.ncbi.nlm.nih.gov/pubmed/25252936

http://www.thctotalhealthcare.com/category/huntingtons/

The endocannabinoid system as a potential therapeutic target for pain modulation.

“Although cannabis has been used for pain management for millennia, very few approved cannabinoids are indicated for the treatment of pain and other medical symptoms.

Cannabinoid therapy re-gained attention only after the discovery of endocannabinoids and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the enzymes playing a role in endocannabinoid metabolism.

Nowadays, research has focused on the inhibition of these degradative enzymes and the elevation of endocannabinoid tonus locally; special emphasis is given on multi-target analgesia compounds, where one of the targets is the endocannabinoid degrading enzyme.

In this review, I provide an overview of the current understanding about the processes accounting for the biosynthesis, transport and metabolism of endocannabinoids, and pharmacological approaches and potential therapeutic applications in this area, regarding the use of drugs elevating endocannabinoid levels in pain conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/25207181

http://www.thctotalhealthcare.com/category/pain-2/

Cannabis-Based Medicine Reduces Multiple Pathological Processes in AβPP/PS1 Mice.

“Several recent findings suggest that targeting the endogenous cannabinoid system can be considered as a potential therapeutic approach to treat Alzheimer’s disease (AD).

The present study supports this hypothesis demonstrating that delta-9-tetrahydrocannabinol (THC) or cannabidiol (CBD) botanical extracts, as well as the combination of both natural cannabinoids, which are the components of an already approved cannabis-based medicine, preserved memory in AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage.

Moreover, THC + CBD reduced learning impairment in AβPP/PS1 mice.

…suggesting a cannabinoid-induced reduction in the harmful effect of the most toxic form of the Aβ peptide.

Among the mechanisms related with these positive cognitive effects, the anti-inflammatory properties of cannabinoids may also play a relevant role…

In summary, the present findings show that the combination of THC and CBD exhibits a better therapeutic profile than each cannabis component alone and support the consideration of a cannabis-based medicine as potential therapy against AD.”