Modulation of Gut-Specific Mechanisms by Chronic Δ9-Tetrahydrocannabinol Administration in Male Rhesus Macaques Infected with Simian Immunodeficiency Virus: A Systems Biology Analysis

 

“The major psychoactive cannabinoid in marijuana, Δ9-tetrahydrocannabinol (THC), exerts unique effects on the progression of simian immunodeficiency virus (SIV) infection.

Previous studies from our laboratory have shown that chronic THC administration ameliorates SIV disease progression and significantly reduces the morbidity and mortality of male SIV-infected macaques.

Our studies have demonstrated that chronic Δ9-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques.

Gut-associated lymphoid tissue is an important site for HIV replication and inflammation that can impact disease progression.

Our results indicate that chronic THC administration modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis. These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.

In summary, using a systems biology approach to understanding the impact of chronic cannabinoid treatment on gut-associated immunopathology, we identified relevant mechanisms that can potentially modulate disease progression.

Our results suggest that gut immunomodulation through changes in gene expression, cytokine profiles, and immune cell populations could potentially contribute to chronic THC modulation of SIV disease progression. Moreover, they reveal novel mechanisms that may potentially contribute to decreased morbidity and mortality.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046212/

CB1 cannabinoid receptor activity is modulated by the cannabinoid receptor interacting protein CRIP 1a.

“The CB1 cannabinoid receptor is a G-protein coupled receptor that has important physiological roles in synaptic plasticity, analgesia, appetite, and neuroprotection.

We report the discovery of two structurally related CB1 cannabinoid receptor interacting proteins (CRIP1a and CRIP1b) that bind to the distal C-terminal tail of CB1. CRIP1a and CRIP1b are generated by alternative splicing of a gene located on chromosome 2 in humans, and orthologs of CRIP1a occur throughout the vertebrates, whereas CRIP1b seems to be unique to primates.

CRIP1a coimmunoprecipitates with CB1receptors derived from rat brain homogenates, indicating that CRIP1a and CB1 interact in vivo. Furthermore, in superior cervical ganglion neurons coinjected with CB1 and CRIP1a or CRIP1b cDNA, CRIP1a, but not CRIP1b, suppresses CB1-mediated tonic inhibition of voltage-gated Ca2+ channels.

Discovery of CRIP1a provides the basis for a new avenue of research on mechanisms of CB1 regulation in the nervous system and may lead to development of novel drugs to treat disorders where modulation of CB1 activity has therapeutic potential (e.g., chronic pain, obesity, and epilepsy).”

http://www.ncbi.nlm.nih.gov/pubmed/17895407

Cannabidiol-2′,6′-dimethyl ether as an effective protector of 15-lipoxygenase-mediated low-density lipoprotein oxidation in vitro.

“15-Lipoxygenase (15-LOX) is one of the key enzymes responsible for the formation of oxidized low-density lipoprotein (ox-LDL), a major causal factor for atherosclerosis.

We have recently reported that cannabidiol-2′,6′-dimethyl ether (CBDD) is a selective and potent inhibitor of 15-LOX-catalyzed linoleic acid oxygenation.

The results obtained demonstrate that CBDD is a potent and selective inhibitor of ox-LDL formation generated by the 15-LOX pathway.

These studies establish CBDD as both an important experimental tool for characterizing 15-LOX-mediated ox-LDL formation, and as a potentially useful therapeutic agent for treatment of atherosclerosis.

In sum, these findings suggest that CBDD may be a useful adjuvant in the treatment of atherosclerosis as well as an experimental tool for analyzing the mechanistic details of PUFAs oxygenation by 15-LOX.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012644/

“Cannabidiol-2′,6′-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Thus, 15-LOX is suggested to be involved in development of atherosclerosis, and CBDD may be a useful prototype for producing medicines for atherosclerosis.”  http://www.ncbi.nlm.nih.gov/pubmed/19406952

[Cannabinoids in multiple sclerosis — therapeutically reasonable?].

“For centuries extracts from the Cannabis sativa plant have been used for recreational use and as remedies.

Anecdotal reports from patients with multiple sclerosis (MS) experiencing relief of their spasticity and pain after smoking marihuana have prompted discussions about a potential therapeutic application of cannabis preparations in MS.

Only recently the first large, multicenter, double-blind, placebo controlled study was conducted evaluating the use of cannabinoids for treatment of spasticity and other symptoms related to MS.

Based on this trial and previous uncontrolled observations together with insights from basic research and animal experiments there is reasonable evidence for the therapeutical employment of cannabinoids in the treatment of MS related symptoms.

Furthermore, data are arising that cannabinoids have immunomodulatory and neuroprotective properties.

This article summarizes the present knowledge of clinical and experimental research regarding the therapeutic potential of cannabinoids for the treatment of MS.”

http://www.ncbi.nlm.nih.gov/pubmed/16052440

The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors.

“Previous studies reported that the co-injection of leptin and cannabinoid CB1 receptor antagonists reduces food intake and body weight in rats, and this effect is more profound than that induced by these compounds individually. Additionally, serotonin mediates the effects of numerous anorectic drugs.

To investigate whether serotonin interacts with leptin and endocannabinoids to affect food intake and body weight, we administered 5-hydroxytryptamine(HT)1B and 5-hydroxytryptamine(HT)2C serotonin receptor antagonists (3 mg/kg GR 127935 and 0.5 mg/kg SB 242084, respectively) to male Wistar rats treated simultaneously with leptin (100 μg/kg) and the CB1 receptor inverse agonist AM 251 (1 mg/kg) for 3 days.

In accordance with previous findings, the co-injection of leptin and AM 251, but not the individual injection of each drug, resulted in a significant decrease in food intake and body weight gain. Blockade of the 5-HT1B and 5-HT2C receptors completely abolished the leptin- and AM 251-induced anorectic and body-weight-reducing effects.

These results suggest that serotonin mediates the leptin- and AM 251-dependent regulation of feeding behavior in rats via the 5-HT1B and 5-HT2C receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27512006

Effective treatment of spasticity using dronabinol in pediatric palliative care.

“Cannabis extracts have a wide therapeutic potential but in many countries they have not been approved for treatment in children so far.

We conducted an open, uncontrolled, retrospective study on the administration of dronabinol to determine the value, efficacy, and safety of cannabis-based medicines in the treatment of refractory spasticity in pediatric palliative care.

Sixteen children, adolescents and young adults having complex neurological conditions with spasticity (aged 1.3-26.6 years, median 12.7 years) were treated with dronabinol by our specialized pediatric palliative care team between 01.12.2010 and 30.04.2015 in a home-care setting. Therapeutic efficacy and side effects were closely monitored.

RESULTS:

Drops of the 2.5% oily tetrahydrocannabinol solution (dronabinol) were administered. A promising therapeutic effect was seen, mostly due to abolishment or marked improvement of severe, treatment resistant spasticity (n = 12). In two cases the effect could not be determined, two patients did not benefit. The median duration of treatment was 181 days (range 23-1429 days). Dosages to obtain a therapeutic effect varied from 0.08 to 1.0 mg/kg/d with a median of 0.33 mg/kg/d in patients with a documented therapeutic effect. When administered as an escalating dosage scheme, side effects were rare and only consisted in vomiting and restlessness (one patient each).

No serious and enduring side effects occurred even in young children and/or over a longer period of time.

CONCLUSIONS:

In the majority of pediatric palliative patients the treatment with dronabinol showed promising effects in treatment resistant spasticity.”

http://www.ncbi.nlm.nih.gov/pubmed/27506815

Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting.

“Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic.

If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea-a conditioned response to the contextual cues associated with illness-inducing chemotherapy-can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options.

One of the first documented medicinal uses of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV.

Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting.”

http://www.ncbi.nlm.nih.gov/pubmed/27507945

A new antipsychotic mechanism of action for cannabidiol

Totally dope! – A new antipsychotic mechanism of action for cannabidiol, by Anand Gururajan

“The pharmacological strategy for the treatment of schizophrenia has not changed in the six decades since chlorpromazine was introduced in 1952. Although several newer agents have recently gained approval, the mechanism of action of antipsychotics is still largely based on normalising dopaminergic neurotransmission which does not adequately address the symptomatology of a very complex disorder. Moreover, they cause side effects such as extrapyramidal motor symptoms and metabolic syndrome which can worsen the patient condition.

In this regard, preclinical and clinical studies since the ’90s have demonstrated the antipsychotic potential of cannabidiol (CBD), a derivative of the cannabis sativa plant which does not have the adverse psychoactive properties of tetrahydrocannabinol.

In particular, CBD has been shown to be effective in attenuating the positive symptoms of schizophrenia with a negligible side-effect profile.

Accumulating evidence implicates dysfunction of the mammalian target of rapamycin (mTOR) signaling cascade in the pathophysiology of schizophrenia. Thus, in a recent paper, Renard et al. (2016) used the amphetamine (AMPH)-sensitisation protocol in rats to investigate whether the antipsychotic effects of CBD were mediated by its effects on the mTOR cascade. Specifically, they focused on the nucleus accumbens shell (NASh) which has been implicated as a therapeutically relevant ‘hot-spot’ for antipsychotic action and is one of the brain regions targeted by CBD.

Thus, together with the fact that CBD alone had no behavioural effects, the behavioural findings reinforce the potential utility of this cannabinoid as an antipsychotic for the treatment of the positive symptoms of schizophrenia.”

http://medicalxpress.com/news/2016-08-antipsychotic-mechanism-action-cannabidiol.html

Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids.

 

“We have investigated the effects of cannabinoid agonists and antagonists on tumour necrosis factor-alpha (TNF-alpha)-induced secretion of interleukin-8 from the colonic epithelial cell line, HT-29.

The cannabinoid receptor agonists [(-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol] (CP55,940); Delta-9-tetrahydrocannabinol; [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl) methyl] pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate] (WIN55,212-2) and 1-propyl-2-methyl-3-naphthoyl-indole (JWH 015) inhibited TNF-alpha induced release of interleukin-8 in a concentration-dependent manner.

We conclude that in HT-29 cells, TNF-alpha-induced interleukin-8 release is inhibited by cannabinoids through activation of cannabinoid CB(2) receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/12498928

“Essential involvement of interleukin-8 (IL-8) in acute inflammation.”  http://www.ncbi.nlm.nih.gov/pubmed/7964163

“Interleukin-8 (IL-8) is known to possess tumorigenic and proangiogenic properties. Overexpression of IL-8 has been detected in many human tumors, including colorectal cancer (CRC). IL-8 promotes tumor growth, metastasis, chemoresistance and angiogenesis, implying IL-8 to be an important therapeutic target in CRC.”  http://www.ncbi.nlm.nih.gov/pubmed/20648559

Modulation of L-α-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids.

“This study has implications for developing new therapeutics for the treatment of cancer, pain, and metabolic disorders.

GPR55 is activated by l-α-lysophosphatidylinositol (LPI) but also by certain cannabinoids.

In this study, we investigated the GPR55 pharmacology of various cannabinoids, including analogues of the CB1 receptor antagonist Rimonabant®, CB2 receptor agonists, and Cannabis sativa constituents.

Here, we show that CB1 receptor antagonists can act both as agonists alone and as inhibitors of LPI signaling under the same assay conditions. This study clarifies the controversy surrounding the GPR55-mediated actions of SR141716A; some reports indicate the compound to be an agonist and some report antagonism. In contrast, we report that the CB2 ligand GW405833 behaves as a partial agonist of GPR55 alone and enhances LPI signaling. GPR55 has been implicated in pain transmission, and thus our results suggest that this receptor may be responsible for some of the antinociceptive actions of certain CB2 receptor ligands.

Here, we report that the little investigated cannabis constituents CBDV, CBGA, and CBGV are potent inhibitors of LPI-induced GPR55 signaling.

The phytocannabinoids Δ9-tetrahydrocannabivarin, cannabidivarin, and cannabigerovarin are also potent inhibitors of LPI.

Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV.

These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/

“Lysophosphatidylinositol (LPI) is a bioactive lipid generated by phospholipase A2 which is believed to play an important role in several diseases.”  http://www.ncbi.nlm.nih.gov/pubmed/22285325

 “The putative cannabinoid receptor GPR55 promotes cancer cell proliferation.  In this issue of Oncogene, two groups demonstrated that GPR55 is expressed in various cancer types in an aggressiveness-related manner, suggesting a novel cancer biomarker and a potential therapeutic target.” http://www.ncbi.nlm.nih.gov/pubmed/21057532
“The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. These findings reveal the importance of GPR55 in human cancer, and suggest that it could constitute a new biomarker and therapeutic target in oncology.” http://www.ncbi.nlm.nih.gov/pubmed/20818416
“The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. These findings may have important implications for LPI as a novel cancer biomarker and for its receptor GPR55 as a potential therapeutic target.”  http://www.ncbi.nlm.nih.gov/pubmed/20838378
“L-α-lysophosphatidylinositol meets GPR55: a deadly relationship. Evidence points to a role of L-α-lysophosphatidylinositol (LPI) in cancer.”  http://www.ncbi.nlm.nih.gov/pubmed/21367464