Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis.

Related image

“Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson’s disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use.

The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress.

We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content.

… unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress.

We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27366949

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=10314&path[]=32486

Endocannabionoid System in Neurological Disorders.

“Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others.

In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer’s disease, Parkinson’s disease and Huntington’s disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies.

Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis.

Current treatments ameliorate the symptoms but are not curative.

Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration.

To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions.

Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/27364363

Marijuana fights Alzheimer’s disease, Salk Institute scientists discover

Cannabinoids remove plaque-forming Alzheimer's proteins from brain cells

“Salk Institute scientists have discovered that a main compound found in marijuana can fight a toxic protein associated with Alzheimer’s disease. According to the scientists, at this time, there are no drugs that significantly inhibit cell death associated with Alzheimer’s disease (AD), Parkinson’s or Huntington’s diseases. However, the most recent data about Alzheimer’s and marijuana suggests that there is a therapeutic potential of cannabinoids (the chemical compounds secreted by cannabis flowers) for the treatment of AD. Cannabinoids are able to remove plaque-forming Alzheimer’s proteins from brain cells, reports the Medical Express on June 29.”  http://www.examiner.com/article/marijuana-fights-alzheimer-s-disease-salk-institute-scientists-discover

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  http://medicalxpress.com/news/2016-06-cannabinoids-plaque-forming-alzheimer-proteins-brain.html

“Cannabinoids remove toxic proteins associated with Alzheimer’s disease from the brain” http://www.irishexaminer.com/examviral/science-world/cannabinoids-remove-toxic-proteins-associated-with-alzheimers-disease-from-the-brain-407788.html

“Marijuana Compound Helps Remove Alzheimer’s Disease Protein From Brain” -brain.” http://www.scienceworldreport.com/articles/42990/20160630/marijuana-compound-helps-remove-alzheimers-disease-protein-from-brain.htm

“Marijuana compound removes toxic Alzheimer’s protein from the brain”  http://www.sciencealert.com/marijuana-compound-removes-toxic-alzheimer-s-protein-from-the-brain

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  https://www.sciencedaily.com/releases/2016/06/160629095609.htm

“Cannabinoids Remove Plaque-forming Alzheimer’s Proteins from Brain Cells”  https://www.laboratoryequipment.com/news/2016/06/cannabinoids-remove-plaque-forming-alzheimers-proteins-brain-cells

“MARIJUANA COMPOUND REMOVES ALZHEIMER’S PLAQUE FROM BRAIN CELLS, STUDY FINDS” http://www.popsci.com/marijuana-compound-removes-alzheimers-plaque-from-brain-cells-study

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

 

Expression of the endocannabinoid receptors in human fascial tissue.

“Cannabinoid receptors have been localized in the central and peripheral nervous system as well as on cells of the immune system, but recent studies on animal tissue gave evidence for the presence of cannabinoid receptors in different types of tissues.

Their presence was supposed also in myofascial tissue, suggesting that the endocannabinoid system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia.

However, until now the expression of CB1 (cannabinoid receptor 1) and CB2 (cannabinoid receptor 2) in fasciae has not yet been established.

Small samples of fascia were collected from volunteers patients during orthopedic surgery. For each sample were done a cell isolation, immunohistochemical investigation (CB1 and CB2 antibodies) and real time RT-PCR to detect the expression of CB1 and CB2.

Both cannabinoid receptors are expressed in human fascia and in human fascial fibroblasts culture cells, although to a lesser extent than the control gene. We can assume that the expression of mRNA and protein of CB1 and CB2 receptors in fascial tissue are concentrated into the fibroblasts.

This is the first demonstration that the fibroblasts of the muscular fasciae express CB1 and CB2. The presence of these receptors could help to provide a description of cannabinoid receptors distribution and to better explain the role of fasciae as pain generator and the efficacy of some fascial treatments.

Indeed the endocannabinoid receptors of fascial fibroblasts can contribute to modulate the fascial fibrosis and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/27349320

Fatty Acid Amide Hydrolase Binding in Brain of Cannabis Users: Imaging With the Novel Radiotracer [11C]CURB.

“One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence.

In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects.

Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/27345297

Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model.

“Cannabinoids, such as Δ9-THC, act through an endogenous signaling system in the vertebrate eye that reduces IOP via CB1 receptors.

Endogenous cannabinoid (eCB) ligand, 2-arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic potential of harnessing eCBs to lower IOP.

Our data confirm a central role for MAGL in metabolism of ocular 2-AG and related lipid species, and that endogenous 2-AG can be harnessed to reduce IOP. The MAGL blocker KML29 has promise as a therapeutic agent, while JZL184 may have difficulty crossing the cornea.

These data, combined with the relative specificity of MAGL for ocular monoacylglycerols and the lack of desensitization in MAGL-/- mice, suggest that the development of an optimized MAGL blocker offers therapeutic potential for treatment of elevated IOP.”

http://www.ncbi.nlm.nih.gov/pubmed/27333182

Identification of Psychoactive Degradants of Cannabidiol in Simulated Gastric and Physiological Fluid

“The flowering plants of the genus Cannabis, which mainly comprises the sativa and indica species, have been recognized for medical treatment for millennia.

Although Cannabis contains nearly 500 compounds from 18 chemical classes, its physiological effects derive mainly from a family of naturally occurring compounds known as plant cannabinoids or phytocannabinoids. Of the more than 100 phytocannabinoids that have been identified in Cannabis, among the most important and widely studied are its main psychoactive constituent, Δ9-tetrahydrocannabinol (Δ9-THC), and the most important nonpsychoactive component, cannabidiol (CBD). Other biologically active phytocannabinoids that have been isolated in Cannabis include Δ8-THC, cannabinol, Δ9-tetrahydrocannabivarin, and cannabidivarin.

In recent research, orally administered cannabidiol (CBD) showed a relatively high incidence of somnolence in a pediatric population. Previous work has suggested that when CBD is exposed to an acidic environment, it degrades to Δ9-tetrahydrocannabinol (THC) and other psychoactive cannabinoids. To gain a better understanding of quantitative exposure, we completed an in vitro study by evaluating the formation of psychoactive cannabinoids when CBD is exposed to simulated gastric fluid (SGF).

SGF converts CBD into the psychoactive components Δ9-THC and Δ8-THC. The first-order kinetics observed in this study allowed estimated levels to be calculated and indicated that the acidic environment during normal gastrointestinal transit can expose orally CBD-treated patients to levels of THC and other psychoactive cannabinoids that may exceed the threshold for a physiological response. Delivery methods that decrease the potential for formation of psychoactive cannabinoids should be explored.

Despite persistent challenges with dosing and administration, CBD-based therapies have a good safety profile and a potential for efficacy in the treatment of a variety of medical conditions. The rapidly evolving sciences of drug delivery and cannabinoid pharmacology may soon lead to breakthroughs that will improve access to the benefits of this pharmacological class of agents. In addition, current technologies, such as transdermal-based therapy, may be able to eliminate the potential for psychotropic effects due to this acid-catalyzed cyclization by delivering CBD through the skin and into the neutral, nonreactive environment of the systemic circulation.”

http://online.liebertpub.com/doi/10.1089/can.2015.0004

Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy

Logo of nihpa

“Severe childhood epilepsies are characterized by frequent seizures, neurodevelopmental delays and impaired quality of life. In these treatment-resistant epilepsies, families often seek alternative treatments.

This survey explored the use of cannabidiol-enriched cannabis in children with treatment-resistant epilepsy. The survey was presented to parents belonging to a Facebook group dedicated to sharing information about the use of cannabidiol-enriched cannabis to treat their child’s seizures.

Nineteen responses met the inclusion criteria for the study: a diagnosis of epilepsy and current use of cannabidiol-enriched cannabis. Thirteen children had Dravet syndrome, four had Doose syndrome, and one each had Lennox-Gastaut syndrome and idiopathic epilepsy.

The average number of anti-epileptic drugs (AEDs) tried before using cannabidiol-enriched cannabis was 12. Sixteen (84%) of the 19 parents reported a reduction in their child’s seizure frequency while taking cannabidiol-enriched cannabis. Of these, two (11%) reported complete seizure freedom, eight (42%) reported a greater than 80% reduction in seizure frequency, and six (32%) reported a 25-60% seizure reduction.

Other beneficial effects included increased alertness, better mood and improved sleep. Side effects included drowsiness and fatigue.

Our survey shows that parents are using cannabidiol-enriched cannabis as a treatment for children with treatment-resistant epilepsy. Because of the increasing number of states that allow access to medical cannabis, its use will likely be a growing concern for the epilepsy community. Safety and tolerability data for cannabidiol-enriched cannabis use among children is not available. Objective measurements of a standardized preparation of pure cannabidiol are needed to determine whether it is safe, well tolerated and efficacious at controlling seizures in this difficult-to-treat pediatric population.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4157067/

Cannabidiol monotherapy for treatment-resistant schizophrenia

SJO banner

“Cannabidiol (CBD), one of the major products of the marijuana plant, is devoid of marijuana’s typical psychological effects. In contrast, potential antipsychotic efficacy has been suggested based on preclinical and clinical data.

In this report, we further investigated the efficacy and safety of CBD monotherapy in three patients with treatment-resistant schizophrenia (TRS).

Efficacy, tolerability and side effects were assessed.

All patients tolerated CBD very well and no side effects were reported.

These preliminary data suggest that CBD monotherapy may not be effective for TRS.”

http://jop.sagepub.com/content/20/5/683.short

Pharmacological hypothermia: a potential for future stroke therapy?

“Mild physical hypothermia after stroke has been associated with positive outcomes.

Pharmacologically induced hypothermia has been explored as a possible treatment option following stroke in animal models.

Currently, there are eight classes of pharmacological agents/agonists with hypothermic effects affecting a multitude of systems including cannabinoid, opioid, transient receptor potential vanilloid 1 (TRPV1), neurotensin, thyroxine derivatives, dopamine, gas, and adenosine derivatives.

This review offers the opinion that these agents may be useful in combination therapies with physical hypothermia to achieve faster and more stable temperature control in hypothermia.”

http://www.ncbi.nlm.nih.gov/pubmed/27320243