Antiemetic Effects of Cannabinoid Agonists in Nonhuman Primates

Journal of Pharmacology and Experimental Therapeutics“Attenuating emesis elicited by both disease and medical treatments of disease remains a critical public health challenge.

Although cannabinergic medications have been used in certain treatment-resistant populations, FDA-approved cannabinoid antiemetics are associated with undesirable side effects, including cognitive disruption, that limit their prescription. Previous studies have shown that a metabolically stable analog of the endocannabinoid anandamide, methanandamide (mAEA), may produce lesser cognitive disruption than that associated with the primary psychoactive constituent in cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), raising the possibility that endocannabinoids may offer a therapeutic advantage over currently used medications.

The present studies were conducted to evaluate this possibility by comparing the antiemetic effects of Δ9-THC (0.032-0.1 mg/kg) and mAEA (3.2-10.0 mg/kg), against nicotine- and lithium chloride (LiCl)-induced emesis and prodromal hypersalivation in squirrel monkeys.

These studies systematically demonstrate for the first time the antiemetic effects of cannabinoid agonists in nonhuman primates. Importantly, although Δ9-THC produced superior antiemetic effects, the milder cognitive effects of mAEA demonstrated in previous studies suggests that it may provide a favorable treatment option under clinical circumstances in which antiemetic efficacy must be balanced against side-effect liability.

SIGNIFICANCE STATEMENT: Emesis has significant evolutionary value as a defense mechanism against ingested toxins; however, it is also one of the most common adverse symptoms associated with both disease and medical treatments of disease. The development of improved anti-emetic pharmacotherapies has been impeded by a paucity of animal models.

The present studies systematically demonstrate for the first time the antiemetic effects of the phytocannabinoid Δ9-tetrahydrocannabinol and endocannabinoid-analog methanandamide in nonhuman primates.”

https://pubmed.ncbi.nlm.nih.gov/32561684/

http://jpet.aspetjournals.org/content/early/2020/06/19/jpet.120.265710

Experiences With Medical Cannabis in the Treatment of Veterans With PTSD: Results From a Focus Group Discussion

 European Neuropsychopharmacology“Posttraumatic stress disorder (PTSD) is an often chronic condition for which currently available medications have limited efficacy.

Medical cannabis is increasingly used to treat patients with PTSD; however, evidence for the efficacy and safety of cannabinoids is scarce. To learn more about patients’ opinions on and experiences with medical cannabis, we organized a focus group discussion among military veterans (N = 7) with chronic PTSD who were treated with medical cannabis. Afterwards, some of their partners (N = 4) joined the group for an evaluation, during which they shared their perspective on their partner’s use of medical cannabis.

Both sessions were audio-recorded, transcribed verbatim, and analyzed by means of qualitative content analysis. Five overarching themes were identified. The first four themes related to the different phases of medical cannabis use – namely, 1) Consideration; 2) Initiation; 3) Usage; and 4) Discontinuation. The fifth theme related to several general aspects of medical cannabis use.

Patients used medical cannabis to manage their symptoms and did not experience an urge to “get high.” They used a variety of different cannabis strains and dosages and reported several therapeutic effects, including an increased quality of sleep. Furthermore, discussions about the experienced stigma surrounding cannabis generated insights with implications for the initiation of medical cannabis use.

These results underscore the value of qualitative research in this field and are relevant for the design of future clinical trials on the use of medical cannabis for the treatment of PTSD.”

https://pubmed.ncbi.nlm.nih.gov/32576481/

“Reported therapeutic effects ranged from reduced anger and irritability to increased sleep quality and reductions in nightmares and night sweats.”

https://www.sciencedirect.com/science/article/pii/S0924977X20301280?via%3Dihub

Cannabis Extract for the Treatment of Painful Tonic Spasms in a Patient With Neuromyelitis Optica Spectrum Disorder: A Case Report

Multiple Sclerosis and Related Disorders | Journal | ScienceDirect.com“Painful tonic spasm (PTS) is a common yet debilitating symptom in patients with neuromyelitis optica spectrum disorder (NMOSD), especially those with longitudinally extensive transverse myelitis. Although carbamazepine is an effective treatment, it poses the risk of severe adverse reactions, such as Steven-Johnson syndrome (SJS).

In this case report, we describe an NMOSD patient with severe PTS suffering from carbamazepine-induced SJS who responded well to cannabis extract. Since cannabinoids can ameliorate spasticity in an experimental autoimmune encephalomyelitis model through cannabinoid 1 (CB1) receptor activation, cannabis extract which includes delta-9-tetrahydrocannabinol (THC) is a potential treatment option for PTS in NMOSD patients.”

https://pubmed.ncbi.nlm.nih.gov/32559701/

“A cannabis extract has been approved for spasticity in multiple sclerosis (MS). Cannabis extract is a potential treatment for PTS in NMOSD patients.”

https://www.msard-journal.com/article/S2211-0348(20)30354-0/pdf

Cannabidiol Anticonvulsant Effect Is Mediated by the PI3Kγ Pathway

Neuropharmacology“The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt)/mechanistic target of rapamycin (mTOR) signaling pathway has been associated with several pathologies in the central nervous system (CNS), including epilepsy. There is evidence supporting the hypothesis that the PI3Kγ signaling pathway may mediate the powerful anticonvulsant properties associated with the cannabinoidergic system.

This work aims to investigate if the anticonvulsant and neuroprotective effects of cannabidiol (CBD) are mediated by PI3Kγ.

CDB increased latency and reduced the severity of pilocarpine-induced behavioral seizures, as well as prevented postictal changes, such as neurodegeneration, microgliosis and astrocytosis, in WT animals, but not in PI3Kγ-/-. CBD in vivo effects were abolished by pharmacological inhibition of cannabinoid receptor or mTOR. In vitro, PI3Kγ inhibition or deficiency also changed CBD protection observed in glutamate-induced cell death assay. Thus, we suggest that the modulation of PI3K/mTOR signaling pathway is involved in the anticonvulsant and neuroprotective effects of CBD.

These findings are important not only for the elucidation of the mechanisms of action of CBD, which are currently poorly understood, but also to allow the prediction of therapeutic and side effects, ensuring efficacy and safety in the treatment of patients with epilepsy.”

https://pubmed.ncbi.nlm.nih.gov/32574650/

“CBD is anticonvulsant in a model of pilocarpine-induced behavioral seizures. CB1 receptor mediates the effects of CBD. PI3Kγ pathway mediates the anticonvulsant neuroprotective effects of CBD.”

https://www.sciencedirect.com/science/article/abs/pii/S0028390820302240?via%3Dihub

Current Application of Cannabidiol (CBD) in the Management and Treatment of Neurological Disorders

SpringerLink“Cannabidiol (CBD), which is nonintoxicating pharmacologically relevant constituents of Cannabis, demonstrates several beneficial effects. It has been found to have antioxidative, anti-inflammatory, and neuroprotective effects. As the medicinal use of CBD is gaining popularity for treatment of various disorders, the recent flare-up of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology. Currently, as lot of clinical trials are underway, CBD demonstrates remarkable potential to become a supplemental therapy in various neurological conditions. It has shown promise in the treatment of neurological disorders such as anxiety, chronic pain, trigeminal neuralgia, epilepsy, and essential tremors as well as psychiatric disorders. While recent FDA-approved prescription drugs have demonstrated safety, efficacy, and consistency enough for regulatory approval in spasticity in multiple sclerosis (MS) and in Dravet and Lennox-Gastaut Syndromes (LGS), many therapeutic challenges still remain. In the current review, the authors have shed light on the application of CBD in the management and treatment of various neurological disorders.”

https://pubmed.ncbi.nlm.nih.gov/32556748/

https://link.springer.com/article/10.1007%2Fs10072-020-04514-2

Plant Derived Versus Synthetic Cannabidiol: Wishes and Commitment of Epilepsy Patients

 cannabidiol | www.thctotalhealthcare.com“A special component of cannabis, cannabidiol (CBD), is currently in the focus of epilepsy treatment and research. In this context, we investigated patients’ expectations and preferences pertaining to plant-derived versus synthetic formulation of cannabidiol, as well as their willingness to get this treatment.

Methods: One hundred and four of 153 patients with different forms of epilepsy (54 % female, mean age 40 ± 16 yrs.) responded to the survey. The survey consisted of 8 questions addressing expectations of and concerns towards CBD treatment, preferences of plant-derived versus synthetic CBD, estimated monthly costs, and willingness to buy CBD at one’s own expense.

Results: The majority (73 %) of the responding epilepsy patients wished to receive plant-derived CBD; 5 % preferred synthetic CBD. Reasons for this choice were botanic origin, lack of chemistry, and the assumption of fewer and less dangerous side effects. Eighty-two percent of the patients estimated the monthly costs of CBD treatment to be below €500. Using the willingness-to-pay approach to assess the commitment of patients, 68 % could imagine buying the drug themselves. Fifty-three percent of these would be willing to pay up to €100, 40 % €100 to €200, and another 7 % €200 to €500 per month.

Conclusion: There is an overwhelming preference towards plant-derived cannabidiol in epilepsy patients, driven by the idea of organic substances being safer and better tolerated than synthetic. The willingness-to-pay approach reflects the high burden and pressure of uncontrolled epilepsy and the expectation of relief. Non-realistic ideas of pricing as well as what patients would be willing and able to pay confirm this perception.”

https://pubmed.ncbi.nlm.nih.gov/32554292/

“Epilepsy patients preferred plant-derived cannabidiol to synthetic cannabidiol.”

https://www.seizure-journal.com/article/S1059-1311(20)30175-8/pdf

Cannabinoids as anti-ROS in Aged Pancreatic Islet Cells

Life Sciences“Cannabinoids are the chemical compounds with a high affinity for cannabinoid receptors affecting the central nervous system through the release of neurotransmitters. However, the current knowledge related to the role of such compounds in the regulation of cellular aging is limited. This study aimed to investigate the effect of cannabidiol and tetrahydrocannabinol on the function of aged pancreatic islets.

Main methods: The expression of p53, p38, p21, p16, and Glut2 genes and β-galactosidase activity were measured as hallmarks of cell aging applying real-time PCR, ELISA, and immunocytochemistry techniques. Pdx1 protein expression, insulin release, and oxidative stress markers were compared between young and aged rat pancreatic islet cells.

Key findings: Upon the treatment of aged pancreatic islets cells with cannabidiol and tetrahydrocannabinol, the expression of p53, p38, p21 and the activity of β-galactosidase were reduced. Cannabidiol and tetrahydrocannabinol increase insulin release, Pdx1, Glut2, and thiol molecules expression, while the oxidative stress parameters were decreased. The enhanced expression of Pdx1 and insulin release in aged pancreatic islet cells reflects the extension of cell healthy aging due to the significant reduction of ROS.

Significance: This study provides evidence for the involvement of cannabidiol and tetrahydrocannabinol in the oxidation process of cellular aging.”

https://pubmed.ncbi.nlm.nih.gov/32553926/

https://www.sciencedirect.com/science/article/abs/pii/S0024320520307190?via%3Dihub

Reactive oxygen species (ROS) are chemically reactive chemical species containing oxygen. ROS can damage lipid, DNARNA, and proteins, which, in theory, contributes to the physiology of aging.” https://en.wikipedia.org/wiki/Reactive_oxygen_species

Effectiveness of Cannabidiol in a Prospective Cohort of Children With Drug-Resistant Epileptic Encephalopathy in Argentina

“We report our preliminary findings regarding effectiveness, safety, and tolerability of cannabidiol (CBD) added to antiepileptic therapy in a cohort of children with drug-resistant epileptic encephalopathies (EEs) with a mean follow-up of 8.5 months (range, 3-12 months).

Methods: A prospective cohort study was designed with the aim of assessing the effectiveness, safety, and tolerability of the addition of CBD to standard antiseizure medications (ASMs) in children with drug-resistant EE enrolled at a single center (Neurology Department, Hospital de Pediatría “Juan P. Garrahan”, Buenos Aires, Argentina).

Results: Fifty patients were enrolled between October 2018 and October 2019, 49 of whom had a follow-up of at least 3 months at the time this interim analysis was performed. Mean age at enrollment was 10.5 years (range 2-16). Median age at first seizure was 7 months. Up to the last visit of each patient (follow-up 3-12 months) 39/49 children (80 %) had responded to treatment with a decrease in seizure frequency. Overall, 77.6 % of the patients had a seizure reduction of at least 25 %, 73.5 % had a ≥ 50 % reduction, and 49 % had a ≥ 75 % reduction. Mean monthly seizure frequency was reduced from 959 to 381 (median decrease from 299 to 102, range, 38-1900; median decrease 66 %, p < 0.001). All adverse effects were mild or moderate. The most common adverse effect was drowsiness (in 32 %), usually reversed by adjusting clobazam dose (in 12 children).

Conclusion: In children with drug-resistant EEs, CBD oil as an adjuvant therapy to antiepileptic therapy seems safe, well tolerated, and effective.”

https://pubmed.ncbi.nlm.nih.gov/32544657/

“Cannibidiol showed good effectiveness, with a ≥ 50 % reduction in seizure frequency in 73.5 % of the patients. Good results were obtained in patients with Lennox-Gastaut and Dravet syndromes. In epileptic encephalopathies other than Lennox-Gastaut results were also good. Cannabidiol showed good safety and tolerability as all adverse effects were mild or moderate.”

https://www.seizure-journal.com/article/S1059-1311(20)30167-9/pdf

Cannabinoid CP55940 Selectively Induces Apoptosis in Jurkat Cells and in Ex Vivo T-cell Acute Lymphoblastic Leukemia Through H 2 O 2 Signaling Mechanism

 Leukemia Research‘T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous malignant hematological disorder arising from T-cell progenitors.

This study was aimed to evaluate the cytotoxic effect of CP55940 on human peripheral blood lymphocytes (PBL) and on T-ALL cells (Jurkat).

In conclusion, CP55940 selectively induces apoptosis in Jurkat cells through a H2O2-mediated signaling pathway.

Our findings support the use of cannabinoids as a potential treatment for T-ALL cells.”

https://pubmed.ncbi.nlm.nih.gov/32540572/

https://www.sciencedirect.com/science/article/abs/pii/S0145212620300941?via%3Dihub

“CP 55,940 is a synthetic cannabinoid which mimics the effects of naturally occurring THC (one of the psychoactive compounds found in cannabis)”  https://en.wikipedia.org/wiki/CP_55,940

Association Between Cannabis Use and Healthcare Utilization in Patients With Irritable Bowel Syndrome: A Retrospective Cohort Study

Cureus | LinkedIn“Irritable bowel syndrome (IBS) is a frequent cause of abdominal pain and altered bowel habits, which is associated with significant healthcare utilization.

The effects of the active compound of cannabis, Δ9-tetrahydrocannabinol (THC), on gut motility and tone have been studied in several experimental models. It is unknown whether these effects correlate with improved healthcare utilization among cannabis users.

The purpose of this study is to evaluate the impact of cannabis use on inpatient length of stay and resource utilization for patients with a primary discharge diagnosis of IBS.

Cannabis users were less likely to have the following: upper gastrointestinal endoscopy (17.9% vs. 26.1%; adjusted odds ratio [aOR]: 0.51 [0.36 to 0.73]; p<0.001) and lower gastrointestinal endoscopy (21.1% vs. 28.7%; aOR: 0.54 [0.39 to 0.75]; p<0.001). Additionally, cannabis users had shorter length of stay (2.8 days vs. 3.6 days; p=0.004) and less total charges (US$20,388 vs. US$23,624). There was no difference in the frequency of CT abdomen performed.

Cannabis use may decrease inpatient healthcare utilization in IBS patients. These effects could possibly be through the effect of cannabis on the endocannabinoid system.”

https://pubmed.ncbi.nlm.nih.gov/32528750/

“Our study provides evidence to suggest that cannabis use may decrease healthcare utilization and costs among hospitalized patients with IBS. These findings are likely attributable to the effects of cannabis’ active compound, THC, on gastrointestinal motility and colonic compliance. The role of cannabis in the treatment for IBS has potential for significant impact at the individual and population level given the burden of IBS on individual quality of life and healthcare expenditures.”

https://www.cureus.com/articles/30417-association-between-cannabis-use-and-healthcare-utilization-in-patients-with-irritable-bowel-syndrome-a-retrospective-cohort-study