Effect of combined doses of Δ9-tetrahydrocannabinol and cannabidiol or tetrahydrocannabinolic acid and cannabidiolic acid on acute nausea in male Sprague-Dawley rats.

 “This study evaluated the potential of combined cannabis constituents to reduce nausea.

CONCLUSION:

Combinations of very low doses of CBD + THC or CBDA + THCA robustly reduce LiCl-induced conditioned gaping. Clinical trials are necessary to determine the efficacy of using single or combined cannabinoids as adjunct treatments with existing anti-emetic regimens to manage chemotherapy-induced nausea.”

https://www.ncbi.nlm.nih.gov/pubmed/31897571

https://link.springer.com/article/10.1007%2Fs00213-019-05428-4

Cannabinoids as an Emerging Therapy for Posttraumatic Stress Disorder and Substance Use Disorders.

Related image “Posttraumatic Stress Disorder (PTSD) is a leading psychiatric disorder that mainly affects military and veteran populations but can occur in anyone affected by trauma. PTSD treatment remains difficult for physicians because most patients with PTSD do not respond to current pharmacological treatment. Psychotherapy is effective, but time consuming and expensive. Substance use disorder is often concurrent with PTSD, which leads to a significant challenge for PTSD treatment.

Cannabis has recently received widespread attention for the potential to help many patient populations. Cannabis has been reported as a coping tool for patients with PTSD and preliminary legalization data indicate Cannabis use may reduce the use of more harmful drugs, such as opioids. Rigorous clinical studies of Cannabis could establish whether Cannabis-based medicines can be integrated into treatment regimens for both PTSD and substance use disorder patients.”

https://www.ncbi.nlm.nih.gov/pubmed/31895187

https://insights.ovid.com/crossref?an=00004691-202001000-00005

The Use of Cannabis as a Treatment for Epilepsy in Adult Patients: Are Side Effects a Limitation of Use?

 Related image“Marijuana is the dried leaves, stems, and flowers of a 1- to 5-m weed originating from Central Asia. The most common varieties are Cannabis sativa and Cannabis indica. It is usually inhaled as smoke but can also be used as a vapor, taken by mouth as a spray, ingested in tea or as butter in baked goods, or in capsule form and used as an oil. Cannabis has been widely used to treat many medical conditions such as multiple sclerosis symptoms, mood disorders, pain, sleep disorders, and seizures among others. Preclinical and clinical studies have been done over the past decade, among them there are few randomized placebo-controlled trials. In the last few years, Cannabis has been proposed as a potential therapy for patients with drug-resistant epilepsy. This review analyzes the best information about the use of cannabis in adult patients, reviewing aspects of efficacy and safety.”

https://www.ncbi.nlm.nih.gov/pubmed/31895185

https://insights.ovid.com/crossref?an=00004691-202001000-00003

A North American History of Cannabis Use in the Treatment of Epilepsy.

 Related image“Cannabis has been used for millennia in religious ceremonies, for recreation and for its medicinal qualities. There are multiple accounts detailing the specific ailments cannabis has been used to treat, many of which have included epilepsy. Racial discrimination and political stigmatization led to prohibition, which limited both patients’ and researchers’ access to the drug through the 20th century. Recently, academic interest has been renewed in cannabis, especially regarding the modulation of cortical excitability via the human endocannabinoid system. Modern research has produced several promising studies regarding the treatment of epileptic encephalopathies. Legalization of marijuana in Canada has potentially allowed for further trials, but it is by no means an end to the controversy surrounding the treatment of epilepsy with cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/31895188

https://insights.ovid.com/crossref?an=00004691-202001000-00006

The Endocannabinoid System and Synthetic Cannabinoids in Preclinical Models of Seizure and Epilepsy.

 Related image“Cannabinoids are compounds that are structurally and/or functionally related to the primary psychoactive constituent of Cannabis sativa, [INCREMENT]-tetrahydrocannabinol (THC). Cannabinoids can be divided into three broad categories: endogenous cannabinoids, plant-derived cannabinoids, and synthetic cannabinoids (SCs).

Recently, there has been an unprecedented surge of interest into the pharmacological and medicinal properties of cannabinoids for the treatment of epilepsies. This surge has been stimulated by an ongoing shift in societal opinions about cannabinoid-based medicines and evidence that cannabidiol, a nonintoxicating plant cannabinoid, has demonstrable anticonvulsant activity in children with treatment-refractory epilepsy.

The major receptors of the endogenous cannabinoid system (ECS)-the type 1 and 2 cannabinoid receptors (CB1R, CB2R)-have critical roles in the modulation of neurotransmitter release and inflammation, respectively; so, it is not surprising therefore that the ECS is being considered as a target for the treatment of epilepsy.

SCs were developed as potential new drug candidates and tool compounds for studying the ECS. Beyond the plant cannabinoids, an extensive research effort is underway to determine whether SCs that directly target CB1R, CB2R, or the enzymes that breakdown endogenous cannabinoids have anticonvulsant effects in preclinical rodent models of epilepsy and seizure.

This research demonstrates that many SCs do reduce seizure severity in rodent models and may have both positive and negative pharmacodynamic and pharmacokinetic interactions with clinically used antiepilepsy drugs. Here, we provide a comprehensive review of the preclinical evidence for and against SC modulation of seizure and discuss the important questions that need to be addressed in future studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31895186

https://insights.ovid.com/crossref?an=00004691-202001000-00004

Cannabis for Pediatric Epilepsy.

 Related image“Epilepsy is a chronic disease characterized by recurrent unprovoked seizures. Up to 30% of children with epilepsy will be refractory to standard anticonvulsant therapy, and those with epileptic encephalopathy can be particularly challenging to treat.

The endocannabinoid system can modulate the physiologic processes underlying epileptogenesis. The anticonvulsant properties of several cannabinoids, namely Δ-tetrahydrocannabinol and cannabidiol (CBD), have been demonstrated in both in vitro and in vivo studies.

Cannabis-based therapies have been used for millennia to treat a variety of diseases including epilepsy. Several studies have shown that CBD, both in isolation as a pharmaceutical-grade preparation or as part of a CBD-enriched cannabis herbal extract, is beneficial in decreasing seizure frequency in children with treatment-resistant epilepsy.

Overall, cannabis herbal extracts appear to provide greater efficacy in decreasing seizure frequency, but the studies assessing cannabis herbal extract are either retrospective or small-scale observational studies. The two large randomized controlled studies assessing the efficacy of pharmaceutical-grade CBD in children with Dravet and Lennox-Gastaut syndromes showed similar efficacy to other anticonvulsants. Lack of data regarding appropriate dosing and pediatric pharmacokinetics continues to make authorization of cannabis-based therapies to children with treatment-resistant epilepsy challenging.”

https://www.ncbi.nlm.nih.gov/pubmed/31895184

https://insights.ovid.com/crossref?an=00004691-202001000-00002

β-Caryophyllene, a CB2-Receptor-Selective Phytocannabinoid, Suppresses Mechanical Allodynia in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

molecules-logo “Neuropathic pain associated with nucleoside reverse transcriptase inhibitors (NRTIs), therapeutic agents for human immunodeficiency virus (HIV), responds poorly to available drugs.

Smoked cannabis was reported to relieve HIV-associated neuropathic pain in clinical trials. Some constituents of cannabis (Cannabis sativa) activate cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors. However, activation of the CB1 receptor is associated with side effects such as psychosis and physical dependence.

Therefore, we investigated the effect of β-caryophyllene (BCP), a CB2-selective phytocannabinoid, in a model of NRTI-induced neuropathic pain.

BCP prevents NRTI-induced mechanical allodynia, possibly via reducing the inflammatory response, and attenuates mechanical allodynia through CB2 receptor activation. Therefore, BCP could be useful for prevention and treatment of antiretroviral-induced neuropathic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/31892132

https://www.mdpi.com/1420-3049/25/1/106

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”   http://www.ncbi.nlm.nih.gov/pubmed/23138934

“Beta-caryophyllene is a dietary cannabinoid.”   https://www.ncbi.nlm.nih.gov/pubmed/18574142

Treatment of Gilles de la Tourette Syndrome with Cannabis-Based Medicine: Results from a Retrospective Analysis and Online Survey.

View details for Cannabis and Cannabinoid Research cover image“Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder that is characterized by motor and vocal tics and psychiatric comorbidities, including attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive behavior/disorder (OCB/OCD). From anecdotal reports and preliminary controlled studies, it is suggested that cannabis-based medicine (CBM) may improve tics and comorbidities in adults with GTS. This study was designed to further investigate efficacy and safety of CBM in GTS and specifically compare effects of different CBM.

Results: From medical records, we identified 98 patients who had used CBM (most often street cannabis followed by nabiximols, dronabinol, medicinal cannabis) for the treatment of GTS: Of the 38 patients who were able to judge, 66% preferred treatment with medicinal cannabis, 18% dronabinol, 11% nabiximols, and 5% street cannabis. Altogether, CBM resulted in a subjective improvement of tics (of about 60% in 85% of treated cases), comorbidities (55% of treated cases, most often OCB/OCD, ADHD, and sleeping disorders), and quality of life (93%). The effects of CBM appear to persist in the long term. Adverse events occurred in half of the patients, but they were rated as tolerable. Dosages of all CBM varied markedly. Patients assessed cannabis (with a preference for tetrahydrocannabinol [THC]-rich strains) as more effective and better tolerated compared with nabiximols and dronabinol. These data were confirmed by results obtained from the online survey (n=40).

Conclusion: From our results, it is further supported that CBM might be effective and safe in the treatment of tics and comorbidities at least in a subgroup of adult patients with GTS. In our sample, patients favored THC-rich cannabis over dronabinol and nabiximols, which might be related to the entourage effect of cannabis. However, several limitations of the study have to be taken into considerations such as the open uncontrolled design and the retrospective data analysis.”

https://www.ncbi.nlm.nih.gov/pubmed/31872061

https://www.liebertpub.com/doi/10.1089/can.2018.0050

Cannabis-based products for pediatric epilepsy: An updated systematic review.

Seizure - European Journal of Epilepsy Home“To provide an up-to-date summary of the benefits and harms of cannabis-based products for epilepsy in children.

METHODS:

We updated our earlier systematic review, by searching for studies published up to May 2019. We included randomized controlled trials (RCTs) and non-randomized studies (NRS) involving cannabis-based products administered to children with epilepsy. Outcomes were seizure freedom, seizure frequency, quality of life, sleep, status epilepticus, death, gastrointestinal adverse events, and emergency room visits.

RESULTS:

Thirty-five studies, including four RCTs, have assessed the benefits and harms of cannabis-based products in pediatric epilepsy (12 since April 2018). All involved cannabis-based products as adjunctive treatment, and most involved cannabidiol. In the RCTs, there was no statistically significant difference between cannabidiol and placebo for seizure freedom (relative risk 6.77, 95 % confidence interval [CI] 0.36-128.38), quality of life (mean difference [MD] 0.6, 95 %CI -2.6 to 3.9), or sleep disruption (MD -0.3, 95 %CI -0.8 to 0.2). Data from both RCTs and NRS suggest that cannabidiol reduces seizure frequency and increases treatment response; however, there is an increased risk of gastrointestinal adverse events.

CONCLUSION:

Newly available evidence supports earlier findings that cannabidiol probably reduces the frequency of seizures among children with drug-resistant epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/31865133

https://www.seizure-journal.com/article/S1059-1311(19)30733-2/fulltext

Cannabinoids and dystonia: an issue yet to be defined.

 “Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal movements and postures. Besides motor manifestations, patients with dystonia also display non-motor signs and symptoms including psychiatric and sensory disturbances.

Symptomatic treatment of motor signs in dystonia largely relies on intramuscular botulinum toxin injections and, in selected cases, on deep brain stimulation. Oral medications and physical therapy offer a few benefits only in a minority of patients.

Cannabinoids have been shown to be a complementary treatment in several neurological disorders but their usefulness in dystonia have not been systematically assessed. Given recent policy changes in favor of cannabis use in clinical practice and the request for alternative treatments, it is important to understand how cannabinoids may impact people with dystonia.

Reviewing the evidence so far available and our own experience, cannabinoids seem to be effective in single cases but further studies are required to improve our understanding on their role as complementary treatment in dystonia.”

https://www.ncbi.nlm.nih.gov/pubmed/31848779

https://link.springer.com/article/10.1007%2Fs10072-019-04196-5