Biological bases for a possible effect of cannabidiol in Parkinson’s disease.

 SciELO - Scientific Electronic Library Online“Current pharmacotherapy of Parkinson’s disease (PD) is palliative and unable to modify the progression of neurodegeneration. Treatments that can improve patients’ quality of life with fewer side effects are needed, but not yet available.

Cannabidiol (CBD), the major non-psychotomimetic constituent of cannabis, has received considerable research attention in the last decade. In this context, we aimed to critically review the literature on potential therapeutic effects of CBD in PD and discuss clinical and preclinical evidence supporting the putative neuroprotective mechanisms of CBD.

RESULTS:

Few studies addressed the biological bases for the purported effects of CBD on PD. Six preclinical studies showed neuroprotective effects, while three targeted the antidyskinetic effects of CBD. Three human studies have tested CBD in patients with PD: an open-label study, a case series, and a randomized controlled trial. These studies reported therapeutic effects of CBD on non-motor symptoms.

CONCLUSIONS:

Additional research is needed to elucidate the potential effectiveness of CBD in PD and the underlying mechanisms involved.”

https://www.ncbi.nlm.nih.gov/pubmed/31314869

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462019005012104&tlng=en

The protective mechanism of cannabidiol in cardiac injury: A systematic review of non-clinical studies.

“Cardiac disease is accounted as the leading cause of worldwide morbidity and mortality, mainly in association with induction of inflammation and oxidative stress. The disease is characterized by the overproduction of reactive oxygen and/or nitrogen species (ROS/RNS), and reduced antioxidant capacity.

Cannabidiol (CBD) is a non-psychoactive ingredient of marijuana that reported to be safe and well tolerated in patients. Due to its pleiotropic effect, CBD has been shown to exert cytoprotective effects. This study intended to clarify the mechanisms and the potential role of CBD regarding cardiac injuries treatment.

RESULTS:

Our findings obviously demonstrate that CBD has multi-functional protective assets to improve cardiac injuries; preliminary through scavenging of free radicals, and reduction of oxidative stress, apoptosis, and inflammation.

CONCLUSION:

CBD can protect against cardiac injuries, mainly through its anti-oxidant, anti-inflammatory, and anti-apoptotic effects on the basis of non-clinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31291873

http://www.eurekaselect.com/173374/article

“Cytoprotection is a process by which chemical compounds provide protection to cells against harmful agents.” https://en.wikipedia.org/wiki/Cytoprotection

Overcoming the psychiatric side effects of the cannabinoid CB1 receptor antagonists: Current approaches for therapeutics development.

“The cannabinoid receptor 1 (CBR1) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the cannabinoid receptor 1 in the last two decades.”

https://www.ncbi.nlm.nih.gov/pubmed/31284863

http://www.eurekaselect.com/173316/article

Isolation, Synthesis And Structure Determination Of Cannabidiol Derivatives And Their Cytotoxic Activities.

Publication Cover

“In a continuing effort to explore the structural diversity and pharmacological activities of natural products based scaffolds, herein, we report the isolation, synthesis, and structure determination of cannabidiol and its derivatives along with their cytotoxic activities. Treatment of cannabidiol (1) with acid catalyst POCl3 afforded a new derivative 6 along with six known molecules 2  57 and, 8. The structure of 6 was elucidated by extensive spectroscopic analyses and DFT calculations of the NMR and ECD data. All the compounds (2  8) were evaluated for their cytotoxic potential against a panel of eight cancer cell lines. Compounds 457, and 8showed pronounced in vitro cytotoxic activity with IC50 values ranging from 5.6 to 60 μM. Out of the active molecules, compounds 4, and 7 were found to be comparable to that of the parent molecule 1 on the inhibition of almost all the tested cancer cell lines.”

https://www.ncbi.nlm.nih.gov/pubmed/31282748

https://www.tandfonline.com/doi/abs/10.1080/14786419.2019.1638381?journalCode=gnpl20

[Topical cannabinoid agonists. An effective new possibility for treating chronic pruritus].

“Chronic, therapy-resistant pruritus often fails to respond to standard measures so new therapeutic approaches are needed.

Recently, the expression of cannabinoid receptors on cutaneous sensory nerve fibers was described, so cannabinoid agonists seem a rational therapeutic option for pruritus.

RESULTS:

In 14/22 patients a good antipruritic effect could be documented. The average reduction in itch was 86.4%. The therapy was well-tolerated by all patients; neither burning burn nor contact dermatitis was observed.

CONCLUSIONS:

Topical cannabinoid agonists represent an new effective and well-tolerated therapy for refractory itching of various origins. Creams with a higher concentration may be even more effective with broader indications.”

https://www.ncbi.nlm.nih.gov/pubmed/16874533

https://link.springer.com/article/10.1007%2Fs00105-006-1180-1

“Cannabinoids for the treatment of chronic refractory pruritus.”  https://www.ncbi.nlm.nih.gov/pubmed/31264498

Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury.

Publication cover image“The present study investigates the potential effect of a Cannabis sativa L. ethanolic extract standardized in cannabidiol as antiinflammatory agent in the skin. The extract inhibited the release of mediators of inflammation involved in wound healing and inflammatory processes occurring in the skin. Cannabis extract and cannabidiol showed different effects on the release of interleukin-8 and vascular endothelial growth factor, which are both mediators whose genes are dependent on NF-κB. Our findings provide new insights into the potential effect of Cannabis extracts against inflammation-based skin diseases.” https://www.ncbi.nlm.nih.gov/pubmed/31250491

https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6400

“The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757311/

“The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders” https://www.sciencedirect.com/science/article/abs/pii/S0006295218303484

Cannabinoid system in the skin – a possible target for future therapies in dermatology.”   https://www.ncbi.nlm.nih.gov/pubmed/19664006

“Extracts of the hemp plant cannabis are traditionally used as a popular remedy against inflammation.” https://medicalxpress.com/news/2007-06-cannabinoids-human-body-anti-inflammatory-effect.html

Use of Cannabis to Relieve Pain and Promote Sleep by Customers at an Adult Use Dispensary

Publication Cover

“Cannabis has been used for pain relief and to promote sleep for thousands of years. Over the past several decades in the United States (U.S.), a therapeutic role for cannabis in mainstream medicine has increasingly emerged. Medical cannabis patients consistently report using cannabis as a substitute for prescription medications. Both pain relief and sleep promotion are common reasons for cannabis use, and the majority of respondents who reported using cannabis for these reasons also reported decreasing or stopping their use of prescription or over-the-counter analgesics and sleep aids. While adult-use laws are frequently called “recreational,” implying that cannabis obtained through the adult use system is only for pleasure or experience-seeking, our findings suggest that many customers use cannabis for symptom relief.”

https://www.ncbi.nlm.nih.gov/pubmed/31264536

https://www.tandfonline.com/doi/full/10.1080/02791072.2019.1626953

“Cannabis Is An Effective Treatment Option For Pain Relief And Insomnia, Study Finds” https://www.inquisitr.com/5509672/cannabis-pain-medications-sleep/

“Marijuana Could Be The Alternative Pain Reliever Replacing Opioids”  https://www.medicaldaily.com/marijuana-alternative-pain-reliever-replacing-opioids-437974

Cannabinoid receptor CB1-immunoreactive nerve fibres in painful and non-painful human tooth pulp.

Journal of Clinical Neuroscience Home“The cannabinoid receptor CB1 is involved in modulation of neuronal hypersensitivity and pain. The aim of this study was to evaluate CB1 receptor levels for the first time in dental pain. A total of 19 patients due for molar extraction were divided into two groups, those with existing dental pain (n=9), and those with no history of pain (n=10). Immunohistochemistry and computer image analysis was used to evaluate CB1-positive nerve fibres in tooth pulp, with neurofilament-immunostaining as a structural nerve marker. CB1-immunoreactive nerve fibres were scattered throughout the tooth pulp and often seen in nerve bundles, but the fibres did not penetrate the subodontoblastic layer. There was no statistically significant change in the CB1 nerve fibre percentage area in the painful group compared to the non-painful group (p=0.146); the neurofilament fibres were significantly reduced in the painful group compared to the controls (p=0.028), but there was no difference in the ratio of CB1 to neurofilaments between the two groups. Thus, CB1 expression is maintained by nerve fibres in painful human dental pulp, and peripherally-restricted CB1 agonists currently in development may advance the treatment of dental pain.”

https://www.ncbi.nlm.nih.gov/pubmed/20705472

https://www.jocn-journal.com/article/S0967-5868(10)00289-4/fulltext

Cannabis and cannabinoids on treatment of inflammation: a patent review

The inflammatory process is a physiological response to a vast number harmful stimulus that takes place in order to restore homeostasis. Many drugs used in pharmacotherapy are effective to control inflammatory responses, however there is a range of adverse effects attributed to steroidal and non-steroidal anti-inflammatory drugs (NSAIDs).

In this sense, herbal medicine and derivatives gain more adepts because of their effectiveness and safety, showing the importance of medicinal plants, especially the Cannabis genus and the cannabinoid derivatives.
The aim of this prospection was to identify data related to patents involving Cannabis and cannabinoids for the treatment of inflammation.
A total of 370 patents were found, of which 17 patents met the inclusion criteria.
Although reports show synergistic effects of the plant components, patents involving Cannabis and cannabinoids focus on isolated substances (CBD e THC). However, patents related to Cannabis and cannabinoids are promising for future use of the plant or its derivatives on the treatment of inflammation.”
“Cannabis-based drugs have been shown to be effective in inflammatory diseases.” https://www.ncbi.nlm.nih.gov/pubmed/29110674
“Cannabinoid-based drugs as anti-inflammatory therapeutics.” http://www.ncbi.nlm.nih.gov/pubmed/15864274

Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia.

Image result for Journal of Psychopharmacology“The present findings reveal an imbalance in the expression and function of different elements of the endocannabinoid system in schizophrenia.

This outcome highlights the relevance of the endocannabinoid system in the pathophysiology of schizophrenia and emphasises its elements as potential targets in the search for new therapeutic strategies.”

https://www.ncbi.nlm.nih.gov/pubmed/31237179

https://journals.sagepub.com/doi/abs/10.1177/0269881119857205?journalCode=jopa

“Therapeutic potential of cannabinoids in schizophrenia.”   https://www.ncbi.nlm.nih.gov/pubmed/24605939

Cannabinoids for the Treatment of Schizophrenia: An Overview. Cannabinoids are found to be very useful in psychiatry because of their antipsychotic properties suggesting a therapeutic use. Cannabinoids treatments are both able to reduce the typical symptoms of schizophrenia and to slow down the disease aggravation.”   https://www.ncbi.nlm.nih.gov/pubmed/26845552

http://www.thctotalhealthcare.com/category/schizophrenia/