Pharmacokinetics and Tolerability of Multiple Doses of Pharmaceutical-Grade Synthetic Cannabidiol in Pediatric Patients with Treatment-Resistant Epilepsy.

“Prior studies have evaluated the use of various constituents of cannabis for their anti-seizure effects. Specifically, cannabidiol, a non-psychoactive component of cannabis, has been investigated for treatment-resistant epilepsy, but more information is needed particularly on its use in a pediatric population.

OBJECTIVE:

The objective of this study was to evaluate the pharmacokinetics and safety of a synthetic pharmaceutical-grade cannabidiol oral solution in pediatric patients with treatment-resistant epilepsy.

RESULTS:

Overall, 61 patients across three cohorts received one of three doses of cannabidiol oral solution (mean age, 7.6 years). The age composition was similar in the three cohorts. There was a trend for increased cannabidiol exposure with increased cannabidiol oral solution dosing, but overall exposure varied. Approximately 2-6 days of twice-daily dosing provided steady-state concentrations of cannabidiol. A bi-directional drug interaction occurred with cannabidiol and clobazam. Concomitant administration of clobazam with 40 mg/kg/day of cannabidiol oral solution resulted in a 2.5-fold increase in mean cannabidiol exposure. Mean plasma clobazam concentrations were 1.7- and 2.2-fold greater in patients receiving clobazam concomitantly with 40 mg/kg/day of cannabidiol oral solution compared with 10 mg/kg/day and 20 mg/kg/day. Mean plasma norclobazam values were 1.3- and 1.9-fold higher for patients taking clobazam plus 40 mg/kg/day of cannabidiol oral solution compared with the 10-mg/kg/day and 20-mg/kg/day groups. All doses were generally well tolerated, and common adverse events that occurred at > 10% were somnolence (21.3%), anemia (18.0%), and diarrhea (16.4%).

CONCLUSIONS:

Inter-individual variability in systemic cannabidiol exposure after pediatric patient treatment with cannabidiol oral solution was observed but decreased with multiple doses. Short-term administration was generally safe and well tolerated.”

https://www.ncbi.nlm.nih.gov/pubmed/31049885

https://link.springer.com/article/10.1007%2Fs40263-019-00624-4

Higher cannabidiol plasma levels are associated with better seizure response following treatment with a pharmaceutical grade cannabidiol.

“The objective of this study was to determine the relationship between cannabidiol (CBD) dose, CBD plasma level, and seizure control in a large open-label single-center study.

METHODS:

All participants with treatment-refractory epilepsy participating in our expanded access program (EAP) were approached for participation. Highly purified grade CBD (Epidiolex®) dosing was weight-based and could be increased every 2 weeks by 5 mg/kg/day up to a maximum dosage of 50 mg/kg/day depending on tolerance and seizure control. Seizure counts were obtained at each visit with frequency calculated per 2-week periods. Cross-sectional plasma peak levels of CBD were obtained ~4 h after dosing in consecutively presenting patients.

RESULTS:

We evaluated 56 adults and 44 children (100 total; 54 female) at two time points – one before initiating CBD and one at the time of CBD plasma level testing. There was a positive linear correlation between CBD dosage (range from 5 to 50 mg/kg/day) and level (range from 7.1-1200 ng/mL) in all participants (r = 0.640; p < 0.001). The quantile regression model supported the notion of increased CBD levels being associated with improvement in seizure frequency after adjusting for age – specifically, a 100 ng/mL increase in CBD level was associated with approximately two counts reduction in seizure frequency per time period (1.87 96% confidence interval [CI] 0.34-3.39; p = 0.018). In participants with the same CBD level, differences in seizure improvement did not depend on age (p = 0.318).

CONCLUSIONS:

In this open-label study, we found evidence of a linear correlation between CBD dosage and plasma levels, and that higher dose/levels are associated with a higher response rate for seizure improvement. Children and adults responded to CBD similarly. However, seizure control response rates suggest children may respond to lower dosages/plasma levels than adults. Findings reported in this study are specific to Epidiolex® and should not be extrapolated to other CBD products.”

https://www.ncbi.nlm.nih.gov/pubmed/31048098

https://www.epilepsybehavior.com/article/S1525-5050(19)30051-4/fulltext

Emerging evidence for the antidepressant effect of cannabidiol and the underlying molecular mechanisms.

Journal of Chemical Neuroanatomy

“Significant limitations with the currently available antidepressant treatment strategies have inspired research on finding new and more efficient drugs to treat depression. Cannabidiol (CBD) is a non-psychotomimetic component of Cannabis sativa, and emerges in this regard as a promising compound. In 2010, we were the first laboratory to demonstrate that CBD is effective in animal models of predictive of antidepressant effect, a finding now confirmed by several other groups. Recent evidence suggests that CBD promotes both a rapid and a sustained antidepressant effect in animal models. CBD has a complex pharmacology, with the ability to interact with multiple neurotransmitter systems involved in depression, including the serotonergic, glutamatergic, and endocannabinoid systems. Moreover, CBD induces cellular and molecular changes in brain regions related to depression neurobiology, such as increased Brain Derived Neurotrophic Factor (BDNF) levels and synaptogenesis in the medial prefrontal cortex, as well as it increases neurogenesis in the hippocampus. This review presents a comprehensive critical overview of the current literature related to the antidepressant effects of CBD, with focus at the possible mechanisms. Finally, challenges and perspectives for future research are discussed.”

https://www.ncbi.nlm.nih.gov/pubmed/31039391

https://www.sciencedirect.com/science/article/pii/S0891061818302114?via%3Dihub

Comparison of different methods for the extraction of cannabinoids from cannabis.

 Publication Cover

“Cannabis oils, namely concentrated cannabis extracts, are getting plenty of attention because of their therapeutic potential for treatment of patients with cancer, HIV, multiple sclerosis and several other pathologies. Here we propose the use of ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) as alternative methods to the current protocols followed by pharmacists, the only authorized to manipulate standardized Cannabis. A third method, consisting of the use of Tween 20 as surfactant, was considered. Our best extraction methodology for commercial hemp extraction was applied to medicinal cannabis. Here we report the results obtained for ‘Eletta campana’, ‘Carmagnola selezionata’, Bediol®, FM2® and Bedrocan®.”

https://www.ncbi.nlm.nih.gov/pubmed/31035854

https://www.tandfonline.com/doi/abs/10.1080/14786419.2019.1601194?journalCode=gnpl20

Development of Oxygen-Bridged Pyrazole-Based Structures as Cannabinoid Receptor 1 Ligands.

molecules-logo

“In this work, the synthesis of the cannabinoid receptor 1 neutral antagonists 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta[1,2-c]pyrazole-3-carboxamide 1a and its deaza N-cyclohexyl analogue 1b has led to a deepening of the structure-activity studies of this class of compounds. A series of novel 4,5-dihydrobenzo-oxa-cycloheptapyrazoles analogues of 1a,b, derivatives 1cj, was synthesized, and their affinity towards cannabinoid receptors was determined. Representative terms were evaluated using in vitro tests and isolated organ assays. Among the derivatives, 1d and 1e resulted in the most potent CB1 receptor ligands (KiCB1 = 35 nM and 21.70 nM, respectively). Interestingly, both in vitro tests and isolated organ assays evidenced CB1antagonist activity for the majority of the new compounds, excluding compound 1e, which showed a CB1 partial agonist behaviour. CB1 antagonist activity of 1b was further confirmed by a mouse gastrointestinal transit assay. Significant activity of the new CB1antagonists towards food intake was showed by preliminary acute assays, evidencing the potentiality of these new derivatives in the treatment of obesity.”

https://www.ncbi.nlm.nih.gov/pubmed/31035548

https://www.mdpi.com/1420-3049/24/9/1656

Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol.

Publication cover image

“Muscle wasting, anorexia, and metabolic dysregulation are common side-effects of cytotoxic chemotherapy, having a dose-limiting effect on treatment efficacy, and compromising quality of life and mortality.

Extracts of Cannabis sativa, and analogues of the major phytocannabinoid Δ9-tetrahydrocannabinol, have been used to ameliorate chemotherapy-induced appetite loss and nausea for decades. However, psychoactive side-effects limit their clinical utility, and they have little efficacy against weight loss.

We recently established that the non-psychoactive phytocannabinoid (CBG) stimulates appetite in healthy rats, without neuromotor side-effects. The present study assessed whether CBG attenuates anorexia and/or other cachectic effects induced by the broad-spectrum chemotherapy agent cisplatin.

RESULTS:

CBG (120 mg/kg) modestly increased food intake, predominantly at 36-60hrs (p<0.05), and robustly attenuated cisplatin-induced weight loss from 6.3% to 2.6% at 72hrs (p<0.01). Cisplatin-induced skeletal muscle atrophy was associated with elevated plasma corticosterone (3.7 vs 13.1ng/ml, p<0.01), observed selectively in MHC type IIx (p<0.05) and IIb (p<0.0005) fibres, and was reversed by pharmacological rescue of dysregulated Akt/S6-mediated protein synthesis and autophagy processes. Plasma metabonomic analysis revealed cisplatin administration produced a wide-ranging aberrant metabolic phenotype (Q2Ŷ=0.5380, p=0.001), involving alterations to glucose, amino acid, choline and lipid metabolism, citrate cycle, gut microbiome function, and nephrotoxicity, which were partially normalized by CBG treatment (Q2Ŷ=0.2345, p=0.01). Lipidomic analysis of hypothalami and plasma revealed extensive cisplatin-induced dysregulation of central and peripheral lipoamines (29/79 and 11/26 screened, respectively), including reversible elevations in systemic N-acyl glycine concentrations which were negatively associated with the anti-cachectic effects of CBG treatment.

CONCLUSIONS:

Endocannabinoid-like lipoamines may have hitherto unrecognized roles in the metabolic side-effects associated with chemotherapy, with the N-acyl glycine subfamily in particular identified as a potential therapeutic target and/or biomarker of anabolic interventions. CBG-based treatments may represent a novel therapeutic option for chemotherapy-induced cachexia, warranting investigation in tumour-bearing cachexia models.”

https://www.ncbi.nlm.nih.gov/pubmed/31035309

Cannabigerol (CBG) is one of the major phytocannabinoids present in Cannabis sativa L. that is attracting pharmacological interest because it is non-psychotropic and is abundant in some industrial hemp varieties. The results indicate that CBG is indeed effective as regulator of endocannabinoid signaling.”
“Cannabigerol displayed significant antitumor activity.” https://link.springer.com/article/10.1007/BF02976895
Antitumor activity of cannabigerol against human oral epitheloid carcinoma cells. Cannabigerol exhibited the highest growth-inhibitory activity against the cancer cell lines.” https://www.ncbi.nlm.nih.gov/pubmed/9875457

Pre- and post-conditioning treatment with an ultra-low dose of Δ9-tetrahydrocannabinol (THC) protects against pentylenetetrazole (PTZ)-induced cognitive damage.

Behavioural Brain Research

“Preconditioning, a phenomenon where a minor noxious stimulus protects from a subsequent more severe insult, and post-conditioning, where the protective intervention is applied following the insult, offer new insight into the neuronal mechanism(s) of neuroprotection and may provide new strategies for the prevention and treatment of brain damage. We have previously reported that a single administration of an extremely low dose of Δ(9)-tetrahydrocannabinol (THC; the psychoactive ingredient of marijuana) to mice induced minor long-lasting cognitive deficits.

In the present study we examined the possibility that such a low dose of THC will protect the mice from more severe cognitive deficits induced by the epileptogenic drug pentylenetetrazole (PTZ). THC (0.002 mg/kg, a dose that is 3-4 orders of magnitude lower than the doses that induce the conventional effects of THC) was administered 1-7 days before, or 1-3 days after the injection of PTZ (60 mg/kg). The consequences of this treatment were studied 3-7 weeks later by various behavioral tests that evaluated different aspects of memory and learning.

We found that a single administration of THC either before or after PTZ abolished the PTZ-induced long-lasting cognitive deficits.

Biochemical studies indicated a concomitant reduction in phosphorylated-ERK (extracellular signal-regulated kinase) in the cerebella of mice 7 weeks following the injection of THC.

Our results suggest that a pre- or post-conditioning treatment with extremely low doses of THC, several days before or after brain injury, may provide safe and effective long-term neuroprotection.”

https://www.ncbi.nlm.nih.gov/pubmed/21315768

https://www.sciencedirect.com/science/article/pii/S0166432811001094?via%3Dihub

Structural Insights into CB1 Receptor Biased Signaling.

ijms-logo

“The endocannabinoid system has emerged as a promising target for the treatment of numerous diseases, including cancer, neurodegenerative disorders, and metabolic syndromes. Thus far, two cannabinoid receptors, CB1 and CB2, have been discovered, which are found predominantly in the central nervous system (CB1) or the immune system (CB2), among other organs and tissues. CB1 receptor ligands have been shown to induce a complex pattern of intracellular effects. The binding of a ligand induces distinct conformational changes in the receptor, which will eventually translate into distinct intracellular signaling pathways through coupling to specific intracellular effector proteins. These proteins can mediate receptor desensitization, trafficking, or signaling. Ligand specificity and selectivity, complex cellular components, and the concomitant expression of other proteins (which either regulate the CB1 receptor or are regulated by the CB1 receptor) will affect the therapeutic outcome of its targeting. With an increased interest in G protein-coupled receptors (GPCR) research, in-depth studies using mutations, biological assays, and spectroscopic techniques (such as NMR, EPR, MS, FRET, and X-ray crystallography), as well as computational modelling, have begun to reveal a set of concerted structural features in Class A GPCRs which relate to signaling pathways and the mechanisms of ligand-induced activation, deactivation, or activity modulation. This review will focus on the structural features of the CB1 receptor, mutations known to bias its signaling, and reported studies of CB1 receptor ligands to control its specific signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/31013934

https://www.mdpi.com/1422-0067/20/8/1837

Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: Expanded access program results.

Epilepsy Research

“Since 2014, patients with severe treatment-resistant epilepsies (TREs) have been receiving add-on cannabidiol (CBD) in an ongoing, expanded access program (EAP), which closely reflects clinical practice.

We conducted an interim analysis of long-term efficacy and tolerability in patients with Lennox-Gastaut syndrome (LGS) or Dravet syndrome (DS) who received CBD treatment through December 2016.

CONCLUSIONS:

Results from this interim analysis support add-on CBD as an effective long-term treatment option in LGS or DS.”

https://www.ncbi.nlm.nih.gov/pubmed/31022635

https://www.sciencedirect.com/science/article/pii/S0920121118305837?via%3Dihub

Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials.

molecules-logo

“Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/31013866

https://www.mdpi.com/1420-3049/24/8/1459