Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain

Image result for wolters kluwer

“Clinical studies indicate that cannabidiol (CBD), the primary nonaddictive component of cannabis that interacts with the serotonin (5-HT)1A receptor, may possess analgesic and anxiolytic effects.

Overall, repeated treatment with low-dose CBD induces analgesia predominantly through TRPV1 activation, reduces anxiety through 5-HT1A receptor activation, and rescues impaired 5-HT neurotransmission under neuropathic pain conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30157131

https://insights.ovid.com/crossref?an=00006396-900000000-98870

Novel inverse agonists for the orphan G protein-coupled receptor 6.

Image result for Heliyon.

“The orphan G protein-coupled receptor 6 (GPR6) displays unique promise as a therapeutic target for the treatment of neuropsychiatric disorders due to its high expression in the striatopallidal neurons of the basal ganglia.

GPR6, along with closely related orphan receptors GPR3 and GPR12, are phylogenetically related to CB1 and CB2 cannabinoid receptors.

In the current study, we performed concentration-response studies on the effects of three different classes of cannabinoids: endogenous, phyto-, and synthetic, on both GPR6-mediated cAMP accumulation and β-arrestin2 recruitment. In addition, structure-activity relationship studies were conducted on cannabidiol (CBD), a recently discovered inverse agonist for GPR6.

We have identified four additional cannabinoids, cannabidavarin (CBDV), WIN55212-2, SR141716A and SR144528, that exert inverse agonism on GPR6. Furthermore, we have discovered that these cannabinoids exhibit functional selectivity toward the β-arrestin2 recruitment pathway.

These novel, functionally selective inverse agonists for GPR6 can be used as research tools and potentially developed into therapeutic agents.”

https://www.ncbi.nlm.nih.gov/pubmed/30480157

Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells.

Image result for jni journal of inflammation

“Neuroinflammation plays a vital role in Alzheimer’s disease and other neurodegenerative conditions.

The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia.

Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer’s disease, Parkinson, and multiple sclerosis (MS).”

https://www.ncbi.nlm.nih.gov/pubmed/30453998

https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-018-1362-7

“Pharmacological characterization of GPR55, a putative cannabinoid receptor.”  https://www.ncbi.nlm.nih.gov/pubmed/20298715

“Our findings also suggest that GPR55 may be a new pharmacological target for the following C. sativa constituents: Δ9-THCV, CBDV, CBGA, and CBGV. These Cannabis sativa constituents may represent novel therapeutics targeting GPR55.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3249141/

The Highs and Lows of the Endocannabinoid System—Another Piece to the Epilepsy Puzzle?

American Epilepsy Society

“Cannabis extracts have been used for the treatment of epilepsy for centuries.

Yet, until recently, this empirical use was not linked to a known mechanism of action. Of the two main and most frequently investigated compounds derived from the cannabis plant, the mechanism of action of tetrahydrocannabinol (THC) is relatively clear and well documented (via CB1R distributed mainly centrally and CB2R distributed mainly peripherally).

The components of endocannabinoid system (ECS) are omnipresent in our bodies and have very divergent roles. Modulating ECS may have therapeutic potential in many human maladies, including psychiatric disorders (e.g., depression, posttraumatic stress disorder, anxiety, or schizophrenia), neurologic conditions, including epilepsy and neurodegenerative processes, diabetes and its complications, obesity, pain management, cancer treatment, graft versus host disease, treatment of chemotherapy side effects, and so on. The list is long, and it is constantly growing.

We investigated changes in the endocannabinoid system and glucose metabolism during temporal lobe epileptogenesis.

This study provides unique evidence that the CB1R is dynamically and progressively involved from the start of mesial temporal lobe epileptogenesis.”

http://epilepsycurrents.org/doi/10.5698/1535-7597.18.5.315

Patients’ and clinicians’ perspectives of co-use of cannabis and opioids for chronic non-cancer pain management in primary care.

International Journal of Drug Policy

“The prevalence of opioid-associated morbidity and mortality underscores the need for research on non-opioid treatments for chronic non-cancer pain (CNCP). Pain is the most common medical condition for which patients request medical cannabis. Limited research indicates that patients are interested in cannabis as a potential addition to or replacement for opioid medication. This analysis reports on CNCP patient and clinician perceptions about the co-use of cannabis and opioids for CNCP management.

METHODS:

We interviewed 23 clinicians and 46 CNCP patients, using semi-structured interview guides, from six safety-net clinics across the San Francisco Bay Area, and 5 key stakeholders involved in CNCP management. We used a modified grounded theory approach to code and analyze transcripts.

RESULTS:

CNCP patients described potential benefits of co-use of cannabis and opioids for pain management and concerns about dosing and addictive potential. Patients reported seeking cannabis when unable to obtain prescription opioids. Clinicians stated that their patients reported cannabis being helpful in managing pain symptoms. Clinicians expressed concerns about the potential exacerbation of mental health issues resulting from cannabis use.

CONCLUSION:

Clinicians are hampered by a lack of clinically relevant information about cannabis use, efficacy and side-effects. Currently no guidelines exist for clinicians to address opioid and cannabis co-use, or to discuss the risk and benefits of cannabis for CNCP management, including side effects. Cannabis and opioid co-use was commonly reported by patients in our sample, yet rarely addressed during clinical CNCP care. Further research is needed on the risks and benefits of cannabis and opioid co-use.”

https://www.ncbi.nlm.nih.gov/pubmed/30472467

https://www.sciencedirect.com/science/article/pii/S0955395918302287

Naturally occurring compounds as pancreatic cancer therapeutics.

Related image

“Naturally occurring small molecule compounds have long been in the spotlight of pancreatic cancer research as potential therapeutics to prevent cancer progression and sensitize chemoresistant tumors. The hope is that terminal pancreatic cancer patients receiving aggressive chemotherapy can benefit from an increase in treatment efficacy without adding further toxicity by way of utilizing natural compounds. While preclinical studies on a number of natural compounds, such as resveratrol, curcumin, rapalogs and cannabinoids, show promising preclinical results, little has translated into clinical practice, though a number of other compounds hold clinical potential. Nevertheless, recent advances in compound formulation may increase the clinical utility of these compounds.”

https://www.ncbi.nlm.nih.gov/pubmed/30459936

“The combination of natural products and standard of care chemotherapy has the potential to increase quality of life and lifespan in pancreatic cancer patients, even though a number of hurdles need to be overcome for routine clinical use.”  http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path[]=26234&path[]=81769

“Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells via Endoplasmic Reticulum Stress–Related Genes. In conclusion, results presented here show that cannabinoids exert a remarkable antitumoral effect on pancreatic cancer cells in vitro and in vivo due to their ability to selectively induce apoptosis of these cells via activation of the p8-ATF-4-TRB3 proapoptotic pathway.”  http://cancerres.aacrjournals.org/content/66/13/6748

Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage.

Neuropharmacology

“Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns.

Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy.

This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection.

RESULTS:

HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated.

CONCLUSIONS:

cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.”

https://www.ncbi.nlm.nih.gov/pubmed/30468796

https://www.sciencedirect.com/science/article/pii/S0028390818308554?via%3Dihub

Cannabis for the treatment of paediatric epilepsy? An update for Canadian paediatricians.

Issue Cover

“The plant Cannabis sativa produces over 140 known cannabinoids. These chemicals generate considerable interest in the medical research community for their possible application to several intractable disease conditions. Recent reports have prompted parents to strongly consider Cannabis products to treat their children with drug resistant epilepsy. Physicians, though, are reluctant to prescribe Cannabis products due to confusion about their regulatory status and limited clinical data supporting their use. We provide the general paediatrician with a brief review of cannabinoid biology, the literature regarding their use in children with drug resistant epilepsy, the current Health Canada and Canadian Paediatric Society recommendations and also the regulations from the physician regulatory bodies for each province and territory. Given the complexities of conducting research on Cannabis products for children with epilepsy, we also discuss outstanding research objectives that must be addressed to support Cannabis products as an accepted treatment option for children with refractory epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/30455572

https://academic.oup.com/pch/article-abstract/23/6/368/4961446?redirectedFrom=fulltext

Epilepsy and Cannabis: A Literature Review.

 

Image result for cureus journal

“Epilepsy is considered to be one of the most common non-communicable neurological diseases especially in low to middle-income countries. Approximately one-third of patients with epilepsy have seizures that are resistant to antiepileptic medications. Clinical trials for the treatment of medically refractory epilepsy have mostly focused on new drug treatments, and result in a significant portion of subjects whose seizures remain refractory to medication.

The off-label use of cannabis sativa plant in treating seizures is known since ancient times. The active ingredients of this plant are delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the latter considered safer and more effective in treating seizures, and with less adverse psychotropic effects.

Clinical trials prior to two years ago have shown little to no significant effects of cannabis in reducing seizures. These trials seem to be underpowered, with a sample size less than 15. In contrast, more recent studies that have included over 100 participants showed that CBD use resulted in a significant reduction in seizure frequency.

Adverse effects of CBD overall appear to be benign, while more concerning adverse effects (e.g., elevated liver enzymes) improve with continued CBD use or dose reduction. In most of the trials, CBD is used in adjunct with epilepsy medication, therefore it remains to be determined whether CBD is itself antiepileptic or a potentiator of traditional antiepileptic medications. Future trials may evaluate the efficacy of CBD in treating seizures due to specific etiologies (e.g., post-traumatic, post-stroke, idiopathic).”

https://www.ncbi.nlm.nih.gov/pubmed/30443449

https://www.cureus.com/articles/14699-epilepsy-and-cannabis-a-literature-review

The protective effects of Δ9 -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia.

Journal of Pharmacy and Pharmacology banner

“A large amount of fructose is metabolized in the liver and causes hepatic functional damage. Δ9 -tetrahydrocannabinol (THC) is known as a therapeutic agent for clinical and experimental applications.

 

The study aims to investigate the effects of THC treatment on inflammation, lipid profiles and oxidative stress in rat liver with hyperinsulinemia.

 

According to the result, long-term and low-dose THC administration may reduce hyperinsulinemia and inflammation in rats to some extent.”

 

https://www.ncbi.nlm.nih.gov/pubmed/30427077

https://onlinelibrary.wiley.com/doi/abs/10.1111/jphp.13042