The Role of Cannabinoids in the Setting of Cirrhosis.

medicines-logo

“Although the mortality rates of cirrhosis are underestimated, its socioeconomic burden has demonstrated a significant global impact. Cirrhosis is defined by the disruption of normal liver architecture after years of chronic insult by different etiologies. Treatment modalities are recommended primarily in decompensated cirrhosis and specifically tailored to the different manifestations of hepatic decompensation. Antifibrogenic therapies are within an active area of investigation.

The endocannabinoid system has been shown to play a role in liver disease, and cirrhosis specifically, with intriguing possible therapeutic benefits. The endocannabinoid system comprises cannabinoid receptors 1 (CB1) and cannabinoid receptor 2 (CB2) and their ligands, endocannabinoids and exocannabinoids.

CB1 activation enhances fibrogenesis, whereas CB2 activation counteracts progression to fibrosis. Conversely, deletion of CB1 is associated with an improvement of hepatic fibrosis and steatosis, and deletion of CB2 results in increased collagen deposition, steatosis, and enhanced inflammation.

CB1 antagonism has also demonstrated vascular effects in patients with cirrhosis, causing an increase in arterial pressure and vascular resistance as well as a decrease in mesenteric blood flow and portal pressure, thereby preventing ascites. In mice with hepatic encephalopathy, CB1 blockade and activation of CB2 demonstrated improved neurologic score and cognitive function.

Endocannabinoids, themselves also have mechanistic roles in cirrhosis. Arachidonoyl ethanolamide (AEA) exhibits antifibrogenic properties by inhibition of HSC proliferation and induction of necrotic death. AEA induces mesenteric vasodilation and hypotension via CB1 induction. 2-arachidonoyl glycerol (2-AG) is a fibrogenic mediator independent of CB receptors, but in higher doses induces apoptosis of HSCs, which may actually show antifibrotic properties. 2-AG has also demonstrated growth-inhibitory and cytotoxic effects.

The exocannabinoid, THC, suppresses proliferation of hepatic myofibroblasts and stellate cells and induces apoptosis, which may reveal antifibrotic and hepatoprotective mechanisms. Thus, several components of the endocannabinoid system have therapeutic potential in cirrhosis.”

https://www.ncbi.nlm.nih.gov/pubmed/29890719

http://www.mdpi.com/2305-6320/5/2/52

Betacaryophyllene – A phytocannabinoid as potential therapeutic modality for human sepsis?

Medical Hypotheses Home

“Sepsis is a clinical condition resulting from a dysregulated immune response to an infection that leads to organ dysfunction. Despite numerous efforts to optimize treatment, sepsis remains to be the main cause of death in most intensive care units.

The endogenous cannabinoid system (ECS) plays an important role in inflammation.

Cannabinoid receptor 2 (CB2R) activation is immunosuppressive, which might be beneficial during the hyper-inflammatory phase of sepsis.

Beta-caryophyllene (BCP) is a non-psychoactive natural cannabinoid (phytocannabinoid) found in Cannabis sativa and in essential oils of spices and food plants, that acts as a selective agonist of CB2R.

We propose BCP administration as novel treatment to reduce hyper-inflammation in human sepsis.”

Probing the endocannabinoid system in healthy volunteers: Cannabidiol alters fronto-striatal resting-state connectivity.

European Neuropsychopharmacology Home

“Tetrahydrocannabinol (THC) and Cannabidiol (CBD) are two substances from cannabis sativa that have been implicated in the treatment of mental and neurological disorders.

We concentrated on a previously validated neuroimaging phenotype, fronto-striatal connectivity across different striatal seeds, because of this loop’s relevance to executive functioning, decision making, salience generation and motivation and its link to various neuropsychiatric conditions. Therefore, we studied the effect of THC and CBD on fronto-striatal circuitry by a seed-voxel connectivity approach using seeds from the caudate and the putamen.

We conducted a cross-over pharmaco-fMRI study in 16 healthy male volunteers with placebo, 10 mg oral THC and 600 mg oral CBD. Resting state was measured in a 3 T scanner. CBD lead to an increase of fronto-striatal connectivity in comparison to placebo.

In contrast to our expectation that THC and CBD show opposing effects, THC versus placebo did not show any significant effects, probably due to insufficient concentration of THC during scanning.

The effect of CBD on enhancing fronto-striatal connectivity is of interest because it might be a neural correlate of its anti-psychotic effect in patients.”

Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels.

Cover image

“Cannabidiol (CBD) is a compound of Cannabis sativa with relevant therapeutic potential in several neuropsychiatric disorders including depression. CBD treatment has shown significant antidepressant-like effects in different rodent preclinical models.

However, the mechanisms involved in CBD-induced antidepressant effects are still poorly understood. Therefore, this work aimed at investigating the participation of serotonin (5-HT) and/or noradrenaline (NA) in CBD-induced antidepressant-like effects in the forced swimming test (FST) by: 1) testing if CBD co-administration with serotonergic (fluoxetine, FLX) or noradrenergic (desipramine, DES) antidepressants would have synergistic effects; and 2) investigating if 5-HT or NA depletion would impair CBD-induced behavioral effects.

Results showed that CBD (10 mg/kg), FLX (10 mg/kg) and DES (5 mg/kg) induced antidepressant-like effects in mice submitted to FST. Ineffective doses of CBD (7 mg/kg), when co-administered with ineffective doses of FLX (5 mg/kg) or DES (2.5 mg/kg) resulted in significant antidepressant-like effects, thus implicating synergistic and/or additive mechanisms.

Pretreatment with PCPA (an inhibitor of serotonin synthesis: 150 mg/kg, i.p., once per day for 4 days), but not DSP-4 (a noradrenergic neurotoxin: 1 μg/μl, i.c.v., 24 h before the test), reduced monoamine levels in the brain. However, only PCPA treatment abolished CBD-induced behavioral effects in FST, indicating the participation of serotonergic mechanisms. None of the treatments induced locomotor effects.

Our results suggest that the antidepressant-like effect induced by CBD in the FST is dependent on serotonin levels in the central nervous system (CNS).”

https://www.ncbi.nlm.nih.gov/pubmed/29885468

https://www.sciencedirect.com/science/article/pii/S0278584618301167

Sub-chronic treatment with cannabidiol but not with URB597 induced a mild antidepressant-like effect in diabetic rats.

Cover image

“Depression associated with diabetes has been described as a highly debilitating comorbidity. Due to its complex and multifactorial mechanisms, the treatment of depression associated with diabetes represents a clinical challenge.

Cannabidiol (CBD), the non-psychotomimetic compound derived from Cannabis sativa, has been pointed out as a promising compound for the treatment of several psychiatric disorders.

Here, we evaluated the potential antidepressant-like effect of acute or sub-chronic treatment with CBD in diabetic rats using the modified forced swimming test (mFST).

Also, to better understand the functionality of the endocannabinoid system in diabetic animals we also evaluated the effect of URB597, a fatty acid amide hydrolase inhibitor.

Acute treatment with either CBD or URB induced an antidepressant-like effect in NGL rats, but not in DBT rats. However, sub-chronic treatment with CBD (only at a dose of 30 mg/kg), but not with URB597, induced a mild antidepressant-like effect in DBT animals. Neither body weight nor blood glucose levels were altered by treatments.

Considering the importance of the endocannabinoid system to the mechanism of action of many antidepressant drugs, the mild antidepressant-like effect of the sub-chronic treatment with CBD, but not with URB597 does not invalidate the importance of deepening the studies involving the endocannabinoid system particularly in DBT animals.”

https://www.ncbi.nlm.nih.gov/pubmed/29885450

The importance of 15-lipoxygenase inhibitors in cancer treatment.

Cancer and Metastasis Reviews

“Cancer-targeted therapy is an expanding and successful approach in treatment of many types of cancers. One of the main categories of targeted therapy is use of small molecule inhibitors. 15-Lipoxygenase (15-LOX) is an enzyme which reacts with polyunsaturated fatty acids and produces metabolites that are implicated in many important human diseases, such as cancer.

Considering the role of 15-LOX (mainly 15-LOX-1) in the progression of some cancers, the discovery of 15-LOX inhibitors could potentially lead to development of novel cancer therapeutics and it can be claimed that 15-LOX inhibitors might be suitable as chemotherapy agents in the near future.

This article reviews relevant publications on 15-LOX inhibitors with focus on their anticancer activities in vitro and in vivo. Many 15-LOX inhibitors have been reported for which separate studies have shown their anticancer activities. This review paves the way to further explore the mechanism of their antiproliferative effects via 15-LOX inhibition.”

“Cannabidiol-2′,6′-Dimethyl Ether, a Cannabidiol Derivative, Is a Highly Potent and Selective 15-Lipoxygenase Inhibitor”  http://dmd.aspetjournals.org/content/37/8/1733.long

“Δ9-tetrahydrocannabinol and its major metabolite Δ9-tetrahydrocannabinol-11-oic acid as 15-lipoxygenase inhibitors.”  https://www.ncbi.nlm.nih.gov/pubmed/20891010

Medicinal cannabis: presenting possible treatment modalities for the future

Image result for ovid journal

“Cannabis is the most popular recreational drug used in the world. It is estimated that 178 million people aged 15–64 years used cannabis at least once in 2012.

Cannabis or cannabinoids used to manage medical conditions is referred to as medicinal cannabis. There are various formulations of cannabis available on the market.

Cannabis can be administered orally, sublingually, or topically; it can be smoked, inhaled, mixed with food, or made into tea. It can be taken in herbal form, extracted naturally from the plant, gained by isomerization of cannabidiol (CBD), or manufactured synthetically.

The commercially available prescribed cannabinoids include dronabinol capsules, nabilone capsules, and the oromucosal spray nabiximols.

Canada and the Netherlands have government-run programs in which dedicated companies supply quality-controlled herbal cannabis. In the United States, 23 states and Washington, DC (May 2015) have introduced laws permitting the medical use of cannabis; other countries have similar laws.”

https://www.ncbi.nlm.nih.gov/pubmed/29870436

https://insights.ovid.com/crossref?an=01787381-201806000-00001

Therapeutic Symptomatic Strategies in the Parasomnias.

Current Treatment Options in Neurology

“The purpose of this review was to discuss the currently available pharmacologic and non-pharmacologic treatment options for parasomnias.

Cannabinoids proved to be effective in some of parasomnias, as in many other neurological disorders.

Prazosin and cannabinoids are effective in nightmare disorder.”

“Parasomnias are a category of sleep disorders that involve abnormal movements, behaviors, emotions, perceptions, and dreams that occur while falling asleep, sleeping, between sleep stages, or during arousal from sleep.”  https://en.wikipedia.org/wiki/Parasomnia

Effects of cannabidiol plus naltrexone on motivation and ethanol consumption.

British Journal of Pharmacology banner

“The aim of this study was to explore if the administration of naltrexone (NTX) together with cannabidiol (CBD) may improve the efficacy in reducing alcohol consumption and motivation rather than any of the drugs given separately.

The administration of CBD + NTX significantly reduced motivation and ethanol intake in the oral self-administration procedure in a greater proportion than the drugs given alone. Only the combination of both drugs significantly reduced Oprm1, TH and 5-HT1A gene expressions in the NAc, VTA and DR, respectively. Interestingly, the administration of WAY100635 significantly blocked the actions of CBD + NTX but had no effects by itself.

CONCLUSION AND IMPLICATIONS:

The combination of low doses of CBD plus NTX resulted more effective to reduce ethanol consumption and motivation to drink. These effects, appears to be mediated, at least in part, by 5-HT1A receptors.”

https://www.ncbi.nlm.nih.gov/pubmed/29859012

https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.14380

Naltrexone belongs to a class of drugs known as opiate antagonists. It works in the brain to prevent opiate effects (e.g., feelings of well-being, pain relief). It also decreases the desire to take opiates. This medication is also used to treat alcohol abuse. It can help people drink less alcohol or stop drinking altogether. It also decreases the desire to drink alcohol when used with a treatment program that includes counseling, support, and lifestyle changes.” https://www.webmd.com/drugs/2/drug-7399/naltrexone-oral/details

“Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Taken together, these results reveal that the administration of CBD reduced the reinforcing properties, motivation and relapse for ethanol. These findings strongly suggest that CBD may result useful for the treatment of alcohol use disorders.”   https://www.ncbi.nlm.nih.gov/pubmed/28194850

Can marijuana help eczema?

Logo of National Eczema Association

“A medical doctor and researchers in the cannabis industry explain the science behind cannabis as a potential treatment for atopic dermatitis.

Weed cream. THC lotion. CBD salve. They go by many names, and there is a lot of interest and hope in the dermatological community that marijuana—or cannabis—may provide an alternate treatment pathway for a variety of skin diseases, especially atopic dermatitis (AD).

Cannabinoids represent an exciting prospect for the future of AD therapy. With measurable anti-itch, anti-pain, anti-microbial and anti-inflammatory properties, the effect of cannabinoids in patients with AD has already begun to be demonstrated.”  https://nationaleczema.org/can-marijuana-help/

Can marijuana help eczema?

“Cannabis could help cure eczema by controlling bacteria that causes skin condition. Research from the National Eczema Association indicates cannabis may help relieve some skin conditions. CANNABIS might be able to solve some eczema problems as research indicates it could take away the itch that comes with the skin condition.” https://www.thesun.co.uk/news/6432805/cannabis-help-treat-cure-eczema/