“Cannabinoid-1 receptor (CB1 R) antagonists/inverse agonists have great potential in the treatment of metabolic disorders like dyslipidemia, type 2 diabetes and non-alcoholic steatohepatitis (NASH). CB1 R inverse agonists have also been reported to be effective in mitigating fibrotic disorders in murine models. Inducible nitric oxide synthase is another promising target implicated in fibrotic and inflammatory disorders. We have disclosed MRI-1867 as a potent and selective, peripherally acting dual-target inhibitor of the cannabinoid receptor (CB1 R) and inducible nitric oxide synthase (iNOS). Herein, we report the synthesis of [13 C6 ]-MRI-1867 as a racemate from commercially available chlorobenzene-13 C6 as the starting, stable-isotope label reagent. The racemic [13 C6 ]-MRI-1867 was further processed to the stable-isotope labeled enantiopure compounds utilizing chiral chromatography. Both racemic [13 C6]-MRI-1867 and S-13 C6 -MRI-1867 will be used to quantitate unlabeled S-MRI-1867 during clinical DMPK studies and will be used as an LC-MS/MS bioanalytical standard.” https://www.ncbi.nlm.nih.gov/pubmed/29790591 https://onlinelibrary.wiley.com/doi/abs/10.1002/jlcr.3639]]>
Tag Archives: treatment
Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview.
“Cannabidiol (CBD) represents a new promising drug due to a wide spectrum of pharmacological actions. In order to relate CBD clinical efficacy to its pharmacological mechanisms of action, we performed a bibliographic search on PUBMED about all clinical studies investigating the use of CBD as a treatment of psychiatric symptoms.
Findings to date suggest that (a) CBD may exert antipsychotic effects in schizophrenia mainly through facilitation of endocannabinoid signalling and cannabinoid receptor type 1 antagonism; (b) CBD administration may exhibit acute anxiolytic effects in patients with generalised social anxiety disorder through modification of cerebral blood flow in specific brain sites and serotonin 1A receptor agonism; (c) CBD may reduce withdrawal symptoms and cannabis/tobacco dependence through modulation of endocannabinoid, serotoninergic and glutamatergic systems; (d) the preclinical pro-cognitive effects of CBD still lack significant results in psychiatric disorders.
In conclusion, current evidences suggest that CBD has the ability to reduce psychotic, anxiety and withdrawal symptoms by means of several hypothesised pharmacological properties. However, further studies should include larger randomised controlled samples and investigate the impact of CBD on biological measures in order to correlate CBD’s clinical effects to potential modifications of neurotransmitters signalling and structural and functional cerebral changes.”
https://www.ncbi.nlm.nih.gov/pubmed/29789034
https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/pharmacological-properties-of-cannabidiol-in-the-treatment-of-psychiatric-disorders-a-critical-overview/D7FD68F40CF30CBB48A1025C66873F26
Novel therapeutic applications of cannabinoids in cancer disease
“The present review shows that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues. The endocannabinoid system is an almost ubiquitous signalling system involved in the control of cell fate. Recent studies have investigated the possibility that drugs targeting the endocannabinoid system might be used to retard or block cancer growth. The endocannabinoids have been shown to inhibit the growth of tumour cells in culture and animal models by modulating key cell signalling pathways. Therefore, the present review indicated that cannabinoids exert their anti-cancer effects in a number of ways and in a variety of tissues.
- Triggering cell death, through a mechanism called apoptosis
- Stopping cells from dividing
- Preventing new blood vessels from growing into tumours
- Reducing the chances of cancer cells spreading through the body, by stopping cells from moving or invading neighbouring tissue
- Speeding up the cell’s internal ‘waste disposal machine’ – a process known as autophagy – which can lead to cell death
Cannabinoids as potential new therapy for the treatment of gliomas

“Epidermolysis bullosa is a rare blistering skin disorder that is challenging to manage because skin fragility and repeated wound healing cause itching, pain, limited mobility, and recurrent infections.
“We evaluated the effects of the non-psychoactive cannabinoid
“Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ⁸-THC lowers intraocular pressure (IOP).
Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ⁸-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors.
However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL), an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG), substantially lowers IOP.
Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ⁸-THC and other lipophilic cannabinoids.
This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects.
We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model.
We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30%) lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice.
Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems.”
“Many malignant cancers, including breast cancer, have a propensity to invade bones, leading to excruciating bone pain.
Opioids are the primary analgesics used to alleviate this cancer-induced bone pain (CIBP) but are associated with numerous severe side effects, including enhanced bone degradation, which significantly impairs patients’ quality of life.
In contrast, agonists activating only peripheral CB1 receptors (CB1Rs) have been shown to effectively alleviate multiple chronic pain conditions with limited side effects, yet no studies have evaluated their role(s) in CIBP.
Here, we demonstrate for the first time that a peripherally selective CB1R agonist can effectively suppress CIBP.
Overall, our studies demonstrate that CIBP can be effectively managed by using a peripherally restricted CB1R agonist, PrNMI, without inducing dose-limiting central side effects.
Thus, targeting peripheral CB1Rs could be an alternative therapeutic strategy for the treatment of CIBP.”