Emerging Role of (Endo)Cannabinoids in Migraine.

Image result for frontiers in pharmacology

“In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain.

Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors.

We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura.

Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.”

https://www.ncbi.nlm.nih.gov/pubmed/29740328

Control of excessive neural circuit excitability and prevention of epileptic seizures by endocannabinoid signaling

Cellular and Molecular Life Sciences

“Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease.

In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy.

Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.”

https://link.springer.com/article/10.1007/s00018-018-2834-8

http://www.x-mol.com/paper/661834

Activation of the Cannabinoid Type 2 Receptor by a Novel Indazole Derivative Normalizes the Survival Pattern of Lymphoblasts from Patients with Late-Onset Alzheimer’s Disease.

CNS Drugs

“Alzheimer’s disease is a multifactorial disorder for which there is no disease-modifying treatment yet.

CB2 receptors have emerged as a promising therapeutic target for Alzheimer’s disease because they are expressed in neuronal and glial cells and their activation has no psychoactive effects.

OBJECTIVE:

The aim of this study was to investigate whether activation of the CB2 receptor would restore the aberrant enhanced proliferative activity characteristic of immortalized lymphocytes from patients with late-onset Alzheimer’s disease. It is assumed that cell-cycle dysfunction occurs in both peripheral cells and neurons in patients with Alzheimer’s disease, contributing to the instigation of the disease.

METHODS:

Lymphoblastoid cell lines from patients with Alzheimer’s disease and age-matched control individuals were treated with a new, in-house-designed dual drug PGN33, which behaves as a CB2 agonist and butyrylcholinesterase inhibitor. We analyzed the effects of this compound on the rate of cell proliferation and levels of key regulatory proteins. In addition, we investigated the potential neuroprotective action of PGN33 in β-amyloid-treated neuronal cells.

RESULTS:

We report here that PGN33 normalized the increased proliferative activity of Alzheimer’s disease lymphoblasts. The compound blunted the calmodulin-dependent overactivation of the PI3K/Akt pathway, by restoring the cyclin-dependent kinase inhibitor p27 levels, which in turn reduced the activity of the cyclin-dependent kinase/pRb cascade. Moreover, this CB2 agonist prevented β-amyloid-induced cell death in neuronal cells.

CONCLUSION:

Our results suggest that the activation of CB2 receptors could be considered a useful therapeutic approach for Alzheimer’s disease.”

https://www.ncbi.nlm.nih.gov/pubmed/29736745

https://link.springer.com/article/10.1007%2Fs40263-018-0515-7

LH-21, A Peripheral Cannabinoid Receptor 1 Antagonist, Exerts Favorable Metabolic Modulation Including Antihypertensive Effect in KKAy Mice by Regulating Inflammatory Cytokines and Adipokines on Adipose Tissue.

Related image

“Patients with obesity are susceptible to hypertension and diabetes. Over-activation of cannabinoid receptor 1 (CB1R) in adipose tissue is proposed in the pathophysiology of metabolic disorders, which led to the metabolic dysfunction of adipose tissue and deregulated production and secretion of adipokines.

In the current study, we determined the impact of LH-21, a representative peripheral CB1R antagonist, on the obesity-accompanied hypertension and explored the modulatory action of LH-21 on the adipose tissue in genetically obese and diabetic KKAy mice.

3-week LH-21 treatment significantly decreased blood pressure with a concomitant reduction in body weight, white adipose tissue (WAT) mass, and a slight loss on food intake in KKAy mice. Meanwhile, glucose handling and dyslipidemia were also markedly ameliorated after treatment. Gene expression of pro-inflammatory cytokines in WAT and the aortae were both attenuated apparently by LH-21, as well the mRNA expression of adipokines (lipocalin-2, leptin) in WAT. Concomitant amelioration on the accumulation of lipocalin-2 was observed in both WAT and aortae. In corresponding with this, serum inflammatory related cytokines (tumor necrosis factor α, IL-6, and CXCL1), and lipocalin-2 and leptin were lowered notably.

Thus according to current results, it can be concluded that the peripheral CB1R antagonist LH-21 is effective in managing the obesity-accompanied hypertension in KKAy mice. These metabolic benefits are closely associated with the regulation on the production and secretion of inflammatory cytokines and adipokines in the WAT, particularly alleviated circulating lipocalin-2 and its accumulation in aortae.”

https://www.ncbi.nlm.nih.gov/pubmed/29731737

https://www.frontiersin.org/articles/10.3389/fendo.2018.00167/full

Enhanced endocannabinoid tone as a potential target of pharmacotherapy.

Cover image

“The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms.

Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids.

The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake.

To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound.

In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels.

Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.”

https://www.ncbi.nlm.nih.gov/pubmed/29729263

https://www.sciencedirect.com/science/article/pii/S0024320518302352

Effects of cannabinoid type 2 receptor agonist AM1241 on morphine-induced antinociception, acute and chronic tolerance, and dependence in mice.

Cover image

“Morphine is a potent opioid analgesic used to alleviate moderate or severe pain but the development of drug tolerance and dependence limits its use in pain management.

Previous studies showed that cannabinoid type 2 (CB2) receptor ligands may modulate opioid effects. However, there is no report of the effect of CB2 receptor agonist on acute morphine tolerance and physical dependence. We therefore investigated the effect of a CB2 receptor agonist (AM1241) on morphine-induced morphine tolerance and physical dependence in mice.

Our findings suggest that coadministration of the CB2 receptor agonist and morphine could increase morphine antinociception and reduce morphine tolerance and physical dependence in mice.

PERSPECTIVE:

Combination of a CB2 agonist and morphine may provide a new strategy for better treatment of acute and chronic pain, and prevention of opioid tolerance and dependence. This may also provide a clue for the treatment of opioid tolerance and dependence in clinic.”

https://www.ncbi.nlm.nih.gov/pubmed/29729431

https://www.sciencedirect.com/science/article/pii/S1526590018301597

“Antinociceptive Synergy between 9 -Tetrahydrocannabinol and Opioids after Oral Administration” http://jpet.aspetjournals.org/content/jpet/304/3/1010.full.pdf

Antinociceptive Synergy between 9 -Tetrahydrocannabinol and Opioids after Oral Administration

Image result for the journal of pharmacology and experimental therapeutics

“Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia

The analgesic effects of opioids, such as morphine and codeine, in mice are enhanced by oral administration of the cannabinoid 9 -tetrahydrocannabinol (9 -THC).

These findings suggest that the use of a low-dose combination of analgesics is a valid and effective approach for the treatment of pain and necessitates further study.

In summary, we have observed that 9 -THC enhances the antinociceptive effects of morphine and codeine in a synergistic fashion. This is the first report of a true synergistic interaction between oral 9 -THC and morphine or codeine, since previous studies have only examined one-dose combinations.

Much more work needs to be done to elucidate the mechanisms by which cannabinoids and opioids interact to produce analgesia. However, the implication that a combination of drugs may be more effective than either drug alone, and at the same time possibly reduce the occurrence of side effects, should provoke further study on analgesic drug interactions.”

http://jpet.aspetjournals.org/content/jpet/304/3/1010.full.pdf

http://healthdocbox.com/Substance_Abuse/71109245-Antinociceptive-synergy-between-9-tetrahydrocannabinol-and-opioids-after-oral-administration.html

Synergistic interactions of endogenous opioids and cannabinoid systems.

 Brain Research

“Cannabinoids and opioids are distinct drug classes historically used in combination to treat pain. Delta(9)-THC, an active constituent in marijuana, releases endogenous dynorphin A and leucine enkephalin in the production of analgesia.

The endocannabinoid, anandamide (AEA), fails to release dynorphin A. The synthetic cannabinoid, CP55,940, releases dynorphin B. Neither AEA nor CP55,940 enhances morphine analgesia. The CB1 antagonist, SR141716A, differentially blocks Delta(9)-THC versus AEA. Tolerance to Delta(9)-THC, but not AEA, involves a decrease in the release of dynorphin A.

Our preclinical studies indicate that Delta(9)-THC and morphine can be useful in low dose combination as an analgesic. Such is not observed with AEA or CP55,940.

We hypothesize the existence of a new CB receptor differentially linked to endogenous opioid systems based upon data showing the stereoselectivity of endogenous opioid release. Such a receptor, due to the release of endogenous opioids, may have significant impact upon the clinical development of cannabinoid/opioid combinations for the treatment of a variety of types of pain in humans.”

https://www.ncbi.nlm.nih.gov/pubmed/10612710

https://www.sciencedirect.com/science/article/pii/S0006899399019083?via%3Dihub

Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

Image result for frontiers in oncology

“Many in vitro and in vivo studies have reported on the antitumorigenic effects of plant-derived cannabinoids (CBDs) and their synthetic analogs, including effects in inducing apoptosis and inhibiting tumor cell growth and metastasis.

Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation.

This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed.

The advantage of combining CBDs with other therapies is that this may allow simultaneous targeting of tumor progression at different levels, while minimizing toxicities for these therapies relative to toxicities from higher doses when used as monotherapies.”

“Cannabis Science Announces the Second Frontiers Peer-Reviewed Publication of its Research Results on the Use of Cannabinoids in the Treatment of Cancers”  https://globenewswire.com/news-release/2018/05/01/1493854/0/en/Cannabis-Science-Announces-the-Second-Frontiers-Peer-Reviewed-Publication-of-its-Research-Results-on-the-Use-of-Cannabinoids-in-the-Treatment-of-Cancers.html

Cannabidiol reverses attentional bias to cigarette cues in a human experimental model of tobacco withdrawal.

Addiction banner

“Cannabidiol (CBD), a non-intoxicating cannabinoid, may be a promising novel smoking cessation treatment due to its anxiolytic properties, minimal side-effects and research showing it may modify drug cue salience.

We used an experimental medicine approach with dependent cigarette smokers to investigate if (1) overnight nicotine abstinence, compared with satiety, will produce greater attentional bias (AB), higher pleasantness ratings of cigarette-related stimuli and increased craving and withdrawal; (2) CBD in comparison to placebo, would attenuate AB, pleasantness of cigarette-related stimuli, craving and withdrawal and not produce any side-effects.

FINDINGS:

When participants received placebo, tobacco abstinence increased AB (p=.001, d =.789) compared with satiety. However, CBD reversed this effect, such that automatic AB was directed away from cigarette cues (p=.007, d= .704) and no longer differed from satiety (p=.82). Compared with placebo, CBD also reduced explicit pleasantness of cigarette images (p=.011; d=.514). Craving (Bayes Factor: 7.07) and withdrawal (Bayes Factor: 6.48) were unaffected by CBD, but greater in abstinence compared with satiety. Systolic blood pressure decreased under CBD during abstinence.

CONCLUSIONS:

A single 800mg oral dose of cannabidiol (CBD) reduced the salience and pleasantness of cigarette cues, compared with placebo, after overnight cigarette abstinence in dependent smokers. CBD did not influence tobacco craving or withdrawal or any subjectively rated side-effects.”

https://www.ncbi.nlm.nih.gov/pubmed/29714034

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14243

“Cannabidiol reduces attentional bias to cigarette cues in nicotine addicts, study finds” http://www.psypost.org/2018/06/cannabidiol-reduces-attentional-bias-cigarette-cues-nicotine-addicts-study-finds-51351