Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders

biomolecules-logo“The potential therapeutic use of some Cannabis sativa plant compounds has been attracting great interest, especially for managing neuropsychiatric disorders due to the relative lack of efficacy of the current treatments.

Numerous studies have been carried out using the main phytocannabinoids, tetrahydrocannabinol (THC) and cannabidiol (CBD). CBD displays an interesting pharmacological profile without the potential for becoming a drug of abuse, unlike THC.

In this review, we focused on the anxiolytic, antidepressant, and antipsychotic effects of CBD found in animal and human studies. In rodents, results suggest that the effects of CBD depend on the dose, the strain, the administration time course (acute vs. chronic), and the route of administration. In addition, certain key targets have been related with these CBD pharmacological actions, including cannabinoid receptors (CB1r and CB2r), 5-HT1A receptor and neurogenesis factors.

Preliminary clinical trials also support the efficacy of CBD as an anxiolytic, antipsychotic, and antidepressant, and more importantly, a positive risk-benefit profile. These promising results support the development of large-scale studies to further evaluate CBD as a potential new drug for the treatment of these psychiatric disorders.”

https://pubmed.ncbi.nlm.nih.gov/33228239/

https://www.mdpi.com/2218-273X/10/11/1575

Cannabis in Parkinson’s Disease: The Patients’ View

IOS Press | Impacting the World of ScienceLittle is known about the patients’ view on treatment with medical cannabis (MC) for Parkinson’s disease (PD).

Objective: To assess the PD community’s perception of MC and patients’ experience with MC.

Results: Overall, 1.348 questionnaires (1.123 nationwide, 225 local) were analysed. 51% of participants were aware of the legality of MC application, 28% of various routes of administration (ROA) and 9% of the difference between delta9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). PD-related cannabis use was reported by 8.4% of patients and associated with younger age, living in large cities and better knowledge about the legal and clinical aspects of MC. Reduction of pain and muscle cramps was reported by more than 40% of cannabis users. Stiffness/akinesia, freezing, tremor, depression, anxiety and restless legs syndrome subjectively improved for more than 20% and overall tolerability was good. Improvement of symptoms was reported by 54% of users applying oral CBD and 68% inhaling THC-containing cannabis. Compared to CBD intake, inhalation of THC was more frequently reported to reduce akinesia and stiffness (50.0% vs. 35.4%; p < 0.05). Interest in using MC was reported by 65% of non-users.

Conclusion: MC is considered as a therapeutic option by many PD patients. Nevertheless, efficacy and different ROA should further be investigated.”

https://pubmed.ncbi.nlm.nih.gov/33216043/

https://content.iospress.com/articles/journal-of-parkinsons-disease/jpd202260

In search of preventative strategies: novel high-CBD cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues

 Archive of "Aging (Albany NY)".“With the current COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need for new therapies and prevention strategies that can help curtail disease spread and reduce mortality.

The inhibition of viral entry and thus spread is a plausible therapeutic avenue. SARS-CoV-2 uses receptor-mediated entry into a human host via the angiotensin-converting enzyme 2 (ACE2), which is expressed in lung tissue as well as the oral and nasal mucosa, kidney, testes and gastrointestinal tract. The modulation of ACE2 levels in these gateway tissues may be an effective strategy for decreasing disease susceptibility.

Cannabis sativa, especially those high in the anti-inflammatory cannabinoid cannabidiol (CBD), has been found to alter gene expression and inflammation and harbour anti-cancer and anti-inflammatory properties. However, its effects on ACE2 expression remain unknown.

Working under a Health Canada research license, we developed over 800 new C. sativa cultivars and hypothesized that high-CBD C. sativa extracts may be used to down-regulate ACE2 expression in target COVID-19 tissues. Using artificial 3D human models of oral, airway and intestinal tissues, we identified 13 high-CBD C. sativa extracts that decrease ACE2 protein levels. Some C. sativa extracts down-regulate serine protease TMPRSS2, another critical protein required for SARS-CoV-2 entry into host cells.

While our most effective extracts require further large-scale validation, our study is important for future analyses of the effects of medical cannabis on COVID-19. The extracts of our most successful novel high-CBD C. sativa lines, pending further investigation, may become a useful and safe addition to the prevention/treatment of COVID-19 as an adjunct therapy.”

https://pubmed.ncbi.nlm.nih.gov/33221759/

Cannabinoids in the management of frontotemporal dementia: a case series

 “Background: Frontotemporal dementia (FTD) is characterized by progressive deterioration in behaviors, executive function and/or language. The behavioral variant (Bv) is characterized by disinhibition and obsessive/compulsive behaviors. These symptoms are sometimes resistant to medications. This series examines patients suffering with treatment-resistant Bv-FTD who were prescribed cannabinoid and related compounds for other indications.

Case presentation: Three FTD cases from a dementia clinic were identified. These patients had disability due to behavior despite typical pharmacologic management. These patients were prescribed marijuana for comorbidities (anxiety, insomnia and pain). In all cases, use of cannabinoid products showed significant improvements in behavior and in the primary indication for prescription.

Conclusion: Review of these cases demonstrates potential for the use of cannabinoids in the management of treatment-resistant Bv-FTD.”

https://pubmed.ncbi.nlm.nih.gov/33190583/

“Frontotemporal dementia is a complicated and difficult disease that can be challenging to manage and often leads to significant burden on caregivers. Sometimes management of behavioral changes is difficult even with medications. In this case series, we report three cases of patients with behavior that was resistant to typical treatment who showed improvement in behavior when they were prescribed medical marijuana for other reason.”

https://www.futuremedicine.com/doi/10.2217/nmt-2020-0048

Therapeutic Applications of Cannabinoids in Cardiomyopathy and Heart Failure

 logo“A large number of cannabinoids have been discovered that could play a role in mitigating cardiac affections. However, none of them has been as widely studied as cannabidiol (CBD), most likely because, individually, the others offer only partial effects or can activate potential harmful pathways.

In this regard, CBD has proven to be of great value as a cardioprotective agent since it is a potent antioxidant and anti-inflammatory molecule. Thus, we conducted a review to condensate the currently available knowledge on CBD as a therapy for different experimental models of cardiomyopathies and heart failure to detect the molecular pathways involved in cardiac protection.

CBD therapy can greatly limit the production of oxygen/nitrogen reactive species, thereby limiting cellular damage, protecting mitochondria, avoiding caspase activation, and regulating ionic homeostasis. Hence, it can affect myocardial contraction by restricting the activation of inflammatory pathways and cytokine secretion, lowering tissular infiltration by immune cells, and reducing the area of infarct and fibrosis formation. These effects are mediated by the activation or inhibition of different receptors and target molecules of the endocannabinoid system.

In the final part of this review, we explore the current state of CBD in clinical trials as a treatment for cardiovascular diseases and provide evidence of its potential benefits in humans.”

https://pubmed.ncbi.nlm.nih.gov/33194003/

https://www.hindawi.com/journals/omcl/2020/4587024/

The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders

“The endocannabinoid (eCB) system encompasses the eCBs anandamide and 2-arachidonoylglycerol, their anabolic/catabolic enzymes, and the cannabinoid CB1 and CB2 receptors. Its expansion to include several eCB-like lipid mediators, their metabolic enzymes, and their molecular targets, forms the endocannabinoidome (eCBome).

This complex signaling system is deeply involved in the onset, progress, and symptoms of major neuropsychiatric disorders and provides a substrate for future therapeutic drugs against these diseases. Such drugs may include not only THC, the major psychotropic component of cannabis, but also other, noneuphoric plant cannabinoids.

These compounds, unlike THC, possess a wide therapeutic window, possibly due to their capability of hitting several eCBome and non-eCBome receptors. This is particularly true for cannabidiol, which is one of the most studied cannabinoids and shows promise for the treatment of a wide range of mental and mood disorders. The eCBome plays a role also in the microbiota-gut-brain axis, which is emerging as an important actor in the control of affective and cognitive functions and in their pathological alterations.”

https://pubmed.ncbi.nlm.nih.gov/33162769/

https://www.dialogues-cns.org/dialoguesclinneurosci-22-259/

Cannabidiol (CBD) reduces cocaine-environment memory in mice

Pharmacology Biochemistry and Behavior “Cocaine addiction is a global health problem with no approved pharmacotherapies.

Preclinical research indicates the non-intoxicating phytocannabinoid, cannabidiol (CBD), can reduce addiction-relevant behaviour for several drug classes (e.g. ethanol, opiates, psychostimulants) in rodents. However, research into the effects of CBD on cocaine addiction-like behaviours is limited, and the acute effects of CBD on cocaine reward are unknown.

Objectives: The present experiments sought to clarify the effects of CBD (10 mg/kg) on the acquisition, consolidation, reconsolidation, extinction and drug-primed reinstatement of cocaine (15 mg/kg) conditioned place preference (CPP) in adult male C57BL6/J mice.

Results: CBD treatment reduced preference for the cocaine-context 20 days after CBD cessation. CBD also reduced consolidation of cocaine memory, and this was evident 1 day after cessation of CBD treatment. Interestingly, CBD treatment also modified cocaine-induced locomotion. CBD did not affect reconsolidation of cocaine-induced place preference, the rate of extinction of cocaine memory, or drug-primed reinstatement of cocaine CPP.

Conclusions: These findings indicate specific effects of acute 10 mg/kg CBD on cocaine memory processes, suggesting delayed effects on cocaine preference and consolidation of cocaine memory, and support the therapeutic utility of CBD for targeting some drug-associated memory processes.”

https://pubmed.ncbi.nlm.nih.gov/33127382/

https://www.sciencedirect.com/science/article/pii/S009130572030527X?via%3Dihub

Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Issue Cover “Objective: To determine the benefit of a tetrahydrocannabinol (THC)-rich cannabis oil on symptoms and quality of life of fibromyalgia patients.

Conclusions: Phytocannabinoids can be a low-cost and well-tolerated therapy to reduce symptoms and increase the quality of life of patients with fibromyalgia. Future studies are still needed to assess long-term benefits, and studies with different varieties of cannabinoids associated with a washout period must be done to enhance our knowledge of cannabis action in this health condition.”

https://pubmed.ncbi.nlm.nih.gov/33118602/

“To our knowledge, this is the first randomized controlled trial to demonstrate the benefit of cannabis oil—a THC-rich whole plant extract—on symptoms and on quality of life of people with fibromyalgia. We conclude that phytocannabinoids can be a low-cost and well-tolerated therapy for symptom relief and quality of life improvement in these patients, and we suggest that this therapy could be included as an herbal medicine option for the treatment of this condition”

https://academic.oup.com/painmedicine/article/21/10/2212/5942556

A Critical Review of the Role of the Cannabinoid Compounds Δ 9-Tetrahydrocannabinol (Δ 9-THC) and Cannabidiol (CBD) and their Combination in Multiple Sclerosis Treatment

molecules-logo“Many people with MS (pwMS) use unregulated cannabis or cannabis products to treat the symptoms associated with the disease. In line with this, Sativex, a synthetic combination of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) has been approved to treat symptoms of spasticity.

In animals, CBD is effective in reducing the amounts of T-cell infiltrates in the spinal cord, suggesting CBD has anti-inflammatory properties. By doing this, CBD has shown to delay symptom onset in animal models of multiple sclerosis and slow disease progression. Importantly, combinations of CBD and Δ9-THC appear more effective in treating animal models of multiple sclerosis.

While CBD reduces the amounts of cell infiltrates in the spinal cord, Δ9-THC reduces scores of spasticity. In human studies, the results are less encouraging and conflict with the findings in animals. Drugs which deliver a combination of Δ9-THC and CBD in a 1:1 ratio appear to be only moderately effective in reducing spasticity scores, but appear to be almost as effective as current front-line treatments and cause less severe side effects than other treatments, such as baclofen (a GABA-B receptor agonist) and tizanidine (an α2 adrenergic receptor agonist).

The findings of the studies reviewed suggest that cannabinoids may help treat neuropathic pain in pwMS as an add-on therapy to already established pain treatments.

Long term double-blind placebo studies are greatly needed to further our understanding of the role of cannabinoids in multiple sclerosis treatment.”

https://pubmed.ncbi.nlm.nih.gov/33113776/

https://www.mdpi.com/1420-3049/25/21/4930

Cannabinoid Receptor Subtype 2 (CB2R) in a Multitarget Approach: Perspective of an Innovative Strategy in Cancer and Neurodegeneration

 Go to Volume 0, Issue 0“The cannabinoid receptor subtype 2 (CB2R) represents an interesting and new therapeutic target for its involvement in the first steps of neurodegeneration as well as in cancer onset and progression.

Several studies, focused on different types of tumors, report a promising anticancer activity induced by CB2R agonists due to their ability to reduce inflammation and cell proliferation. Moreover, in neuroinflammation, the stimulation of CB2R, overexpressed in microglial cells, exerts beneficial effects in neurodegenerative disorders.

With the aim to overcome current treatment limitations, new drugs can be developed by specifically modulating, together with CB2R, other targets involved in such multifactorial disorders.

Building on successful case studies of already developed multitarget strategies involving CB2R, in this Perspective we aim at prompting the scientific community to consider new promising target associations involving HDACs (histone deacetylases) and σ receptors by employing modern approaches based on molecular hybridization, computational polypharmacology, and machine learning algorithms.”

https://pubmed.ncbi.nlm.nih.gov/33094613/

https://pubs.acs.org/doi/10.1021/acs.jmedchem.0c01357

Abstract Image