Topical Medical Cannabis (TMC): A new treatment for wound pain-Three cases of Pyoderma Gangrenosum.

Cover image volume 54, Issue 2

“Pain associated with integumentary wounds is highly prevalent yet it remains an area of significant unmet need within healthcare. Currently, systemically administered opioids are the mainstay of treatment. However, recent publications are casting opioids in a negative light given their high side effect profile, inhibition of wound healing, and association with accidental overdose, incidents that are frequently fatal. Thus, novel analgesic strategies for wound-related pain need to be investigated.

The ideal methods of pain relief for wound patients are modalities that are topical, lack systemic side effects, non-invasive, self-administered, and display rapid onset of analgesia.

Extracts derived from the cannabis plant have been applied to wounds for thousands of years. The discovery of the human endocannabinoid system and its dominant presence throughout the integumentary system provides a valid and logical scientific platform to consider the use of topical cannabinoids for wounds.

We are reporting a prospective case series of 3 patients with Pyoderma Gangrenosum (PG) that were treated with Topical Medical Cannabis (TMC) compounded in non-genetically modified organic sunflower oil.

Clinically significant analgesia that was associated with reduced opioid utilization was noted in all 3 cases. TMC has the potential to improve pain management in patients suffering from wounds of all classes.”

https://www.ncbi.nlm.nih.gov/pubmed/28818631

http://www.jpsmjournal.com/article/S0885-3924(17)30351-2/fulltext

Use of medical cannabis to reduce pain and improve quality of life in cancer patients.

Journal of Clinical Oncology

“Early attention to pain and symptoms in those with cancer improves both quality of life and survival. Opioid medications are the mainstay treatment of cancer-related pain.

Cannabinoids are increasingly used as adjunctive treatments for cancer pain, but clinical evidence supporting their use as an “opioid sparing agent” or to improve quality of life is as yet unknown.

Our study sought to determine if the addition of cannabinoids (medical cannabis) resulted in the reduction of the average opioid dose required for pain control, and improve self-reported quality of life indices.

Patients with cancer pain benefited from the addition of cannabinoids.

The average opioid dose decreased following access to medical cannabis.

Self-reported ratings of several quality of life indicators showed statistically significant improvement.

Our study shows a signal that cannabinoids may reduce cancer patients’ reliance on opioids to control pain.

Further prospective controlled studies are needed to further elucidate the role of cannabinoids in the treatment of cancer pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28148191

GPR55: A therapeutic target for Parkinson’s disease?

Cover image

“The GPR55 receptor is expressed abundantly in the brain, especially in the striatum, suggesting it might fulfill a role in motor function. Indeed, motor behavior is impaired in mice lacking GPR55, which also display dampened inflammatory responses.

Abnormal-cannabidiol (Abn-CBD), a synthetic cannabidiol (CBD) isomer, is a GPR55 agonist that may serve as a therapeutic agent in the treatment of inflammatory diseases.

In this study, we explored whether modulating GPR55 could also represent a therapeutic approach for the treatment of Parkinson’s disease (PD).

These results demonstrate for the first time that activation of GPR55 might be beneficial in combating PD.”

https://www.ncbi.nlm.nih.gov/pubmed/28807673

http://www.sciencedirect.com/science/article/pii/S0028390817303842

“The orphan receptor GPR55 is a novel cannabinoid receptor”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2095107/

The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress.

Biomed Central

“The G protein-coupled receptor 55 (GPR55) is a novel cannabinoid receptor, whose exact role in anxiety remains unknown. The present study was conducted to explore the possible mechanisms by which GPR55 regulates anxiety and to evaluate the effectiveness of O-1602 in the treatment of anxiety-like symptoms. Mice were exposed to two types of acute stressors: restraint and forced swimming. Anxiety behavior was evaluated using the elevated plus maze and the open field test. We found that O-1602 alleviated anxiety-like behavior in acutely stressed mice. We used lentiviral shRNA to selective ly knockdown GPR55 in the medial orbital cortex and found that knockdown of GPR55 abolished the anxiolytic effect of O-1602. We also used Y-27632, a specific inhibitor of ROCK, and U73122, an inhibitor of PLC, and found that both inhibitors attenuated the effectiveness of O-1602. Western blot analysis revealed that O-1602 downregulated the expression of GluA1 and GluN2A in mice. Taken together, these results suggest that GPR55 plays an important role in anxiety and O-1602 may have therapeutic potential in treating anxiety-like symptoms.”

A Review of the Therapeutic Antitumor Potential of Cannabinoids.

:Image result for J Altern Complement Med.

“The aim of this review is to discuss cannabinoids from a preclinical and clinical oncological perspective and provide the audience with a concise, retrospective overview of the most significant findings concerning the potential use of cannabinoids in cancer treatment.

RESULTS:

Cannabis sativa is a plant rich in more than 100 types of cannabinoids. Besides exogenous plant cannabinoids, mammalian endocannabinoids and synthetic cannabinoid analogues have been identified. Cannabinoid receptors type 1 (CB1) and type 2 (CB2) have been isolated and characterized from mammalian cells. Through cannabinoid receptor and non-receptor signaling pathways, cannabinoids show specific cytotoxicity against tumor cells, while protecting healthy tissue from apoptosis. The dual antiproliferative and proapoptotic effects of cannabinoids and associated signaling pathways have been investigated on a large panel of cancer cell lines. Cannabinoids also display potent anticancer activity against tumor xenografts, including tumors that express high resistance to standard chemotherapeutics. Few studies have investigated the possible synergistic effects of cannabinoids with standard oncology therapies, and are based on the preclinically confirmed concept of “cannabinoid sensitizers.” Also, clinical trials aimed to confirm the antineoplastic activity of cannabinoids have only been evaluated on a small number of subjects, with no consensus conclusions regarding their effectiveness.

CONCLUSIONS:

A large number of cannabinoid compounds have been discovered, developed, and used to study the effects of cannabinoids on cancers in model systems. However, few clinical trials have been conducted on the use of cannabinoids in the treatment of cancers in humans. Further studies require extensive monitoring of the effects of cannabinoids alone or in combination with standard anticancer strategies. With such knowledge, cannabinoids could become a therapy of choice in contemporary oncology.”

Speechlessness in Gilles de la Tourette Syndrome: Cannabis-Based Medicines Improve Severe Vocal Blocking Tics in Two Patients.

ijms-logo

“We report the cases of two young German male patients with treatment-resistant Tourette syndrome (TS), who suffer from incapacitating stuttering-like speech disfluencies caused by vocal blocking tics and palilalia. Case 1: a 19-year old patient received medical cannabis at a dose of 1 × 0.1 g cannabis daily. Case 2: a 16-year old patient initially received dronabinol at a maximum dose of 22.4-33.6 mg daily. Both treatments provided significant symptom improvement of vocal blocking tics as well as of comorbid conditions and were well tolerated. Thus, cannabis-based medicine appears to be effective in treatment-resistant TS patients with vocal blocking tics.”

Perioperative Patient Beliefs Regarding Potential Effectiveness of Marijuana (Cannabinoids) for Treatment of Pain: A Prospective Population Survey.

logo

“Cannabinoids have an expanding presence in medicine.

Perioperative patients’ perceptions of the effectiveness of these compounds, and acceptance if prescribed for pain, have not been previously described. Our primary objective was to describe patients’ beliefs regarding the potential effectiveness of cannabinoids for the treatment of acute and chronic pain, as well as gauge patient acceptance of these compounds if prescribed by a physician.

More than 80% of this cohort of preoperative patients believed that marijuana could be at least somewhat effective for the treatment of pain after surgery and would be willing to use cannabinoid compounds if prescribed by their physician.

Patients generally believe that marijuana could be at least somewhat effective for the management of pain and are willing to use cannabinoid compounds for this indication, if prescribed by a physician.”

Effects of Cannabidiol on Morphine Conditioned Place Preference in Mice.

“This study sought to determine whether the cannabis constituent cannabidiol attenuates the development of morphine reward in the conditioned place preference paradigm.

Separate groups of mice received either saline or morphine in combination with one of four doses of cannabidiol using three sets of drug/no-drug conditioning trials. After drug-place conditioning, morphine mice displayed robust place preference that was attenuated by 10 mg/kg cannabidiol. Further, when administered alone, this dose of cannabidiol was void of rewarding and aversive properties.

The finding that cannabidiol blocks opioid reward suggests that this compound may be useful in addiction treatment settings.”

https://www.ncbi.nlm.nih.gov/pubmed/28793355

https://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-117838

Role of Endocannabinoids on Neuroinflammation in Autism Spectrum Disorder Prevention

Logo of jcdr

Autism Spectrum Disorder (ASD) disease has become a mounting socio-economical alarm around the world. Neuroinflammtion had been shown in postmortem brain specimens from ASD patients.

The Endocannabinoids System (ES) consists of a family of locally produced, short-lived, endogenous, phospholipid-derived agonists (endocannabinoids) that control energy balance and body composition. The growing number of medical benefits of ES, such as their ability to regulate processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of ASD.

The complex nature of ASD advocates a multimodal drug approach that could protect from the various processes underlying neurodegeneration and thus, at minimum, delay the pathological process. The expected benefit from a chronic treatment aimed at stimulating the endocannabinoid system is a delayed progression of ASD: i.e., reduced inflammation, sustained potential for neurogenesis, and delayed memory impairment. Such results could lead to new therapeutic strategies that target the inflammation and the decline in neurogenesis associated ASD.”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535348/

Cannabinoid system of dorsomedial telencephalon modulates behavioral responses to noxious stimulation in the fish Leporinus macrocephalus.

Physiology & Behavior

“Fish dorsomedial telencephalon has been considered a pallial region homologous to mammals amygdala, being considered a possible substrate for nociception modulation in this animal group. The present study aimed to evaluate the participation of the cannabinoid system of Dm telencephalon on nociception modulation in the fish Leporinus macrocephalus. We demonstrated that cannabidiol microinjection in Dm telecephalon inhibits the behavioral nociceptive response to the subcutaneous injection of 3% formaldehyde, and this antinociception is blocked by previous treatment with AM251 microinjection. Furthermore, AM251 microinjection in Dm prior to restraint stress also blockades the stress-induced antinociception. These results reinforce the hypothesis that this pallial telencephalic structure has a pivotal role in nociception modulation in fish.”

https://www.ncbi.nlm.nih.gov/pubmed/28754268

http://www.sciencedirect.com/science/article/pii/S0031938417302299?via%3Dihub