Anticonvulsive Properties of Cannabidiol in a Model of Generalized Seizure Are Transient Receptor Potential Vanilloid 1 Dependent

View details for Cannabis and Cannabinoid Research cover image“Highly purified cannabidiol (CBD) (approved as Epidiolex® in the United States) has demonstrated efficacy with an acceptable safety profile in patients with Lennox-Gastaut or Dravet syndrome in four randomized controlled trials. CBD possesses affinity for many target classes with functional effects relevant to the pathophysiology of many disease types, including epilepsy.

Although the mechanism of action of CBD underlying the reduction of seizures in humans is unknown, transient receptor potential vanilloid 1 (TRPV1) represents a plausible target because (1) CBD activates and then desensitizes TRPV1, (2) TRPV1 is overexpressed in models of temporal lobe epilepsy and patients with epilepsy, (3) and TRPV1 modulates neuronal excitability.

Methods: To investigate a potential role of TRPV1 in the anticonvulsive effects of CBD, the effect of CBD on seizure threshold was assessed using a mouse maximal electroshock threshold model of generalized seizure in TRPV1 knockout and wildtype mice. The dose dependence of the CBD effect was determined and compared with that of the positive comparator diazepam and vehicle.

Results: At 50 and 100 mg/kg, CBD significantly (p<0.0001) increased seizure threshold in wildtype mice compared with TRPV1 knockout and vehicle controls. This effect was observed only at 100 mg/kg in TRPV1 knockout mice compared with knockout vehicle mice, in which gene deletion partially attenuated the CBD-increased seizure threshold. The effect of high-dose CBD in wildtype mice was nevertheless significantly different from vehicle-treated TRPV1 knockout mice (p<0.0001). Bioanalysis confirmed that genotype-specific differential brain exposure to CBD was not responsible for the observed effect on seizure threshold.

Conclusion: These data strongly implicate TRPV1 in the potential mechanisms of action for the anticonvulsive effects of CBD. The partial inhibition of the anticonvulsive effect of high-dose CBD in TRPV1 knockout mice may indicate the involvement of targets other than TRPV1. Further characterization of TRPV1 in the anticonvulsive effect of CBD in validated models of seizure is warranted, as is pharmacological investigation of the molecular interaction between CBD and TRPV1.”

https://pubmed.ncbi.nlm.nih.gov/32656346/

https://www.liebertpub.com/doi/10.1089/can.2019.0028

Role of Endocannabinoid Activation of Peripheral CB1 Receptors in the Regulation of Autoimmune Disease.

“The impact of the endogenous cannabinoids (AEA, 2-AG, PEA, and virodamine) on the immune cell expressed cannabinoid receptors (CB1, CB2, TRPV-1, and GPR55) and consequent regulation of immune function is an exciting area of research with potential implications in the prevention and treatment of inflammatory and autoimmune diseases.

Despite significant advances in understanding the mechanisms through which cannabinoids regulate immune functions, not much is known about the role of endocannabinoids in the pathogenesis or prevention of autoimmune diseases.

Inasmuch as CB2 expression on immune cells and its role has been widely reported, the importance of CB1 in immunological disorders has often been overlooked especially because it is not highly expressed on naive immune cells.

Therefore, the current review aims at delineating the effect of endocannabinoids on CB1 receptors in T cell driven autoimmune diseases. This review will also highlight some autoimmune diseases in which there is evidence indicating a role for endocannabinoids in the regulation of autoimmune pathogenesis.

Overall, based on the evidence presented using the endocannabinoids, specifically AEA, we propose that the peripheral CB1 receptor is involved in the regulation and amelioration of inflammation associated with autoimmune diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/24911431