Abstract
“After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana’s psychoactive principle Delta(9)-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest ‘additions’ to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids.”
Introduction
“The discovery in the early 1990s of specific membrane receptors of marijuana’s psychoactive component (-)-Δ9-tetrahydrocannabinol (THC) opened the way to the revelation of a whole endogenous signaling system now known as the endocannabinoid system. Apart from the cannabinoid CB1 and CB2 receptors (Pertwee, 1997), this system comprises also their endogenous ligands (the endocannabinoids) and the proteins for their synthesis and inactivation, as well as other molecular targets for the endocannabinoids. However, as new findings on the regulation of the levels and action of the endocannabinoids, and new data on their possible physiological and pathological role, are reported every day in the literature, it is easy to understand that the story of the endocannabinoid system is far from set. For example, while until the end of the 20th century only two endocannabinoids, anandamide (N-arachidonoyl-ethanolamine, AEA) and 2-arachidonoyl-glycerol (2-AG) had been discovered (Devane et al., 1992; Mechoulam et al., 1995; Sugiura et al., 1995), in just a couple of years, three more candidates to the role of cannabinoid receptor agonists have been proposed: 2-arachidonyl-glyceryl ether (noladin, 2-AGE), O-arachidonoyl-ethanolamine (virhodamine) and N-arachidonoyl-dopamine (NADA) (Bisogno et al., 2000; Huang et al., 2002; Porter et al., 2002). These findings not only suggest that the endocannabinoid family is larger than initially thought but also enlarge our view on the possible molecular mechanisms for the biosynthesis, action and inactivation of these lipid mediators. This brief article aims at giving a picture as much updated as possible on the ‘old’ and ‘new’ components of the endocannabinoid system, while highlighting the latest and most important findings in this field.”
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574255/